Изометрия по двум видам. Аксонометрия. Стандартные изометрические проекции

Стандарт устанавливает следующие виды, получаемые на основных плоскостях проекций (рис.1.2): вид спереди (главный), вид сверху, вид слева, вид справа, вид снизу, вид сзади.

За главный вид принимают тот, который дает наиболее полное представление о форме и размерах предмета.

Количество изображений должно быть наименьшим, но обеспечивающим полное представление о форме и размерах предмета.

Если основные виды расположены в проекционной связи, то их названия не обозначают. Для наилучшего использования поля чертежа виды допускается располагать вне проекционной связи (рис.2.2). В этом случае изображение вида сопровождается обозначением по типу:

1)указывается направление взгляда

2) над изображением вида наносят обозначение А , как на рис. 2.1.

Виды обозначаются прописными буквами русского алфавита шрифтом, на 1...2 размера превышающим шрифт размерных чисел.

На рисунке 2.1 показана деталь, для которой необходимо выполнить четыре вида. Если эти виды расположить в проекционной связи, то на поле чертежа они займут много места. Можно расположить необходимые виды так, как показано на рис. 2.1. Формат чертежа уменьшается, но нарушена проекционная связь, поэтому нужно выполнить обозначение вида справа ().

2.2.Местные виды.

Местным видом называется изображение отдельного ограниченного места поверхности предмета.

Он может быть ограничен линией обрыва (рис.2.3 а) или не ограничен (рис.2.3б).

В общем случае местные виды оформляются так же, как и основные виды.

2.3. Дополнительные виды.

Если какую-либо часть предмета невозможно показать на основных видах без искажения формы и размеров, то применяют дополнительные виды.

Дополнительным видом называется изображение видимой части поверхности предмета, получаемой на плоскости, не параллельной ни одной из основных плоскостей проекций.


Если дополнительный вид выполняется в проекционной связи с соответствующим изображением (рис.2.4 а), то его не обозначают.

Если изображение дополнительного вида выносится на свободное место (рис.2.4 б), т.е. нарушается проекционная связь, то направление взгляда указывается стрелкой, расположенной перпендикулярно изображаемой части детали и обозначается буквой русского алфавита, причем буква остается параллельна основной надписи чертежа, а не поворачивается за стрелкой.

При необходимости изображение дополнительного вида можно поворачивать, тогда над изображением ставится буква и знак поворота (это окружность 5...6мм со стрелкой, между створками которой угол 90°) (рис.2.4 в).

Дополнительный вид чаще всего выполняют как местный.

3.Разрезы.

Разрезом называется изображение предмета, мысленно рассеченного одной или несколькими плоскостями. На разрезе показывается то, что лежит в секущей плоскости и что расположено за ней.

При этом часть предмета, расположенную между наблюдателем и секущей плоскостью, мысленно удаляют, в результате чего все закрытые этой частью поверхности становятся видимыми.

3.1. Построение разрезов.

На рис.3.1 даны три вида предмета (без разреза). На главном виде внутренние поверхности: прямоугольный паз и цилиндрическое ступенчатое отверстие показаны штриховыми линиями.

На рис. 3.2 вычерчен разрез, полученный следующим образом.

Секущей плоскостью, параллельной фронтальной плоскости проекций, предмет мысленно рассечен вдоль своей оси, проходящей через прямоугольный паз и цилиндрическое ступенчатое отверстие, расположенное в центре предмета.. Затем мысленно была удалена передняя половина предмета, находящаяся между наблюдателем и секущей плоскостью. Так, как предмет симметричен, то нет смысла давать полный разрез. Его выполняют справа, а слева оставляют вид.

Вид и разрез разделяют штрихпунктирной линией. На разрезе показано то, что получилось в секущей плоскости и то, что находится за ней.

При рассмотрении чертежа можно заметить следующее:

1) штриховые линии, которыми на главном виде обозначены прямоугольный паз и цилиндрическое ступенчатое отверстие, на разрезе обведены сплошными основными линиями, так как они стали в результате мысленного рассечения предмета видимыми;

2) на разрезе, проходившая вдоль главного вида сплошная основная линия, обозначающая срез, отпала вовсе, так как передняя половина предмета не изображается. Срез, находящийся на изображаемой половине предмета, не обозначен, так как на разрезах не рекомендуется показывать штриховыми линиями невидимые элементы предмета;

3) на разрезе штриховкой выделена плоская фигура, находящаяся в секущей плоскости, штриховка наносится только в том месте, где секущая плоскость рассекает материал предмета. По этой причине задняя поверхность цилиндрического ступенчатого отверстия не заштрихована, так же как и прямоугольный паз (при мысленном рассечении предмета секущая плоскость этих поверхностей не затронула);

4) при изображении цилиндрического ступенчатого отверстия проведена сплошная основная линия, изображающая на фронтальной плоскости проекций горизонтальную плоскость, образованную изменением диаметров;

5) разрез, помещенный на месте главного изображения, никак не изменяет изображений вида сверху и слева.

При выполнении разрезов на чертежах необходимо руководствоваться следующими правилами:

1) выполнять на чертеже только полезные разрезы ("полезными"называются разрезы, выбранные по соображениям необходимости и достаточности);

2) невидимые ранее внутренние очертания, изображаемые штриховыми линиями, обводить сплошными основными линиями;

3) фигуру сечения, входящую в разрез, штриховать;

4) мысленное рассечение предмета должно относиться только к данному разрезу и не влиять на изменение других изображений того же предмета;

5) на всех изображениях штриховые линии убираются, т. к. внутренний контур хорошо читается на разрезе.

3.2 Обозначение разрезов

Для того, чтобы знать, в каком месте предмет имеет форму, показанную на изображении разреза, место, где проходила секущая плоскость, и сам разрез обозначают. Линия, обозначающая секущую плоскость, называется линией сечения. Она изображается разомкнутой линией.

При этом выбирают начальные буквы алфавита (А, Б, В, Г, Д и т. д.). Над разрезом, полученным с помощью данной секущей плоскости, выполняют надпись по типу А-А , т.е. двумя парными буквами через тире (рис.3.3).

Буквы у линий сечения и буквы, обозначающие разрез, должны быть большего размера, чем цифры размерных чисел на том же чертеже (на один-два номера шрифта)

В случаях, когда секущая плоскость совпадает с плоскостью симметрии данного предмета и соответствующие изображения расположены на одном и том же листе в непосредственной проекционной связи и не разделены какими-либо другими изображениями, рекомендуется не отмечать положение секущей плоскости и изображение разреза не сопровождать надписью.

На рис.3.3 показан чертеж предмета, на котором выполнено два разреза.

1. На главном виде разрез выполнен плоскостью, расположение которой совпадает с плоскостью симметрии для данного предмета. Она проходит вдоль горизонтальной оси на виде сверху. Поэтому этот разрез не обозначен.

2. Секущая плоскость А-А не совпадает с плоскостью симметрии данной детали, поэтому соответствующий разрез обозначен.

Буквенное обозначение секущих плоскостей и разрезов располагают параллельно основной надписи независимо от угла наклона секущей плоскости.

3.3 Штриховка материалов в разрезах и сечениях.

В разрезах и сечениях фигуру, полученную в секущей плоскости, штрихуют.

ГОСТ 2.306-68 устанавливает графическое обозначение различных материалов (рис.3.4)

Штриховка для металлов наносится тонкими линиями под углом 45° к линиям контура изображения, или к его оси, или к линиям рамки чертежа, причем, расстояние между линиями должно быть одинаковым.

Штриховка на всех разрезах и сечениях для данного предмета одинакова по направлению и шагу (расстояние между штрихами).

3.4. Классификация разрезов.

Разрезы имеют несколько классификаций:

1. Классификация, в зависимости от количества секущих плоскостей;

2. Классификация, в зависимости от положения секущей плоскости относительно плоскостей проекций;

3. Классификация, в зависимости от положения секущих плоскостей относительно друг друга.

Рис. 3.5

3.4.1 Простые разрезы

Простым называют разрез, выполненный одной секущей плоскостью.

Положение секущей плоскости может быть различным: вертикальным, горизонтальным, наклонным. Его выбирают в зависимости от формы предмета, внутреннее устройство которого нужно показать.

В зависимости от положения секущей плоскости относительно горизонтальной плоскости проекций разрезы подразделяются на вертикальные, горизонтальные и наклонные.

Вертикальным называется разрез при секущей плоскости, перпендикулярной горизонтальной плоскости проекций.

Вертикально расположенная секущая плоскость может быть параллельна фронтальной плоскости проекций или профильной, образуя при этом соответственно фронтальный (рис.3.6) или профильный разрезы (рис.3.7).

Горизонтальным разрезом называется разрез при секущей плоскости, параллельной горизонтальной плоскости проекций (рис.3.8).

Наклонным разрезом называется разрез при секущей плоскости, составляющей с одной из основных плоскостей проекций угол, отличный от прямого (рис.3.9).

1. По аксонометрическому изображению детали и заданным размерам начертить три ее вида - главный, сверху и слева. Наглядное изображение не перечерчивать.

7.2. Задание 2

2. Выполнить необходимые разрезы.

3. Построить линии пересечения поверхностей.

4. Нанести размерные линии и проставить размерные числа.

5. Выполнить обводку чертежа и заполнить основную надпись.

7.3. Задание 3

1. По размерам перечертить заданные два вида предмета и построить третий вид.

2. Выполнить необходимые разрезы.

3. Построить линии пересечения поверхностей.

4. Нанести размерные линии и проставить размерные числа.

5. Выполнить обводку чертежа и заполнить основную надпись.

Для всех задач виды чертить только в проекционной связи.

7.1. Задача 1.

Рассмотрим примеры выполнения заданий.

Задача1 . По наглядному изображению построить три вида детали и выполнить необходимые разрезы.

7.2 Задача 2

Задача2 . По двум видам построить третий вид и выполнить необходимые разрезы.

Задача 2. III этап.

1. Выполнить необходимые разрезы. Количество разрезов должно быть минимальным, но достаточным, чтобы прочитать внутренний контур.

1. Секущая плоскость А открывает внутренние соосные поверхности. Эта плоскость параллельна фронтальной плоскости проекций, поэтому разрез А-А совмещается с главным видом.

2. На виде слева показан местный разрез, открывающий цилиндрическое отверстие Æ32.

3. Размеры наносятся на тех изображениях, где поверхность читается лучше, т.е. диаметр, длина и т.д., например, Æ52 и длина 114.

4. Выносные линии по возможности не пересекать. Если главный вид выбран правильно, то наибольшее количество размеров будет на главном виде.

Проверить:

  1. Чтобы каждый элемент детали имел достаточное количество размеров.
  2. Чтобы все выступы и отверстия были привязаны размерами к другим элементам детали (размер 55, 46, и 50).
  3. Габаритные размеры.
  4. Выполнить обводку чертежа, убрав все линии невидимого контура. Заполнить основную надпись.

7.3. Задача 3.

Построить три вида детали и выполнить необходимые разрезы.

8. Сведения о поверхностях.

Построение линий, принадлежащих поверхностям.

Поверхности.

Для того, чтобы построить линии пересечения поверхностей, нужно уметь строить не только поверхности, но и точки, расположенные на них. В этом разделе рассматриваются наиболее часто встречающиеся поверхности.

8.1. Призма.

Задана трехгранная призма (рис.8.1), усеченная фронтально-проецирующей плоскостью (2ГПЗ, 1 алгоритм, модуль №3). S Ç L= т (1234 )

Так как призма проецирующая относительно П 1 , то горизонтальная проекция линии пересечения уже есть на чертеже, она совпадает с главной проекцией заданной призмы.

Секущая плоскость проецирующая относительно П 2 , значит и фронтальная проекция линии пересечения есть на чертеже, она совпадает с фронтальной проекцией этой плоскости.

Профильная проекция линии пересечения строится по двум заданным проекциям.

8.2. Пирамида

Задана усеченная трехгранная пирамида Ф(S,АВС) (рис.8.2).

Данная пирамида F пересекается плоскостями S, D и Г .

2 ГПЗ, 2 алгоритм (Модуль №3).

Ф Ç S = 123

S ^ П 2 Þ S 2 = 1 2 2 2 3 2

1 1 2 1 3 1 и 1 3 2 3 3 3 Ф .

Ф Ç D = 345

D ^ П 2 Þ = 3 2 4 2 5 2

3 1 4 1 5 1 и 3 3 4 3 5 3 строятся по принадлежности к поверхности Ф .

Ф Ç Г = 456

Г ÇП 2 Þ Г 2 = 4 2 5 6

4 1 5 1 6 1 и 4 3 5 3 6 3 строятся по принадлежности к поверхности Ф .

8.3. Тела, ограниченные поверхностями вращения.

Телами вращения называют геометрические фигуры, ограниченные поверхностями вращения (шар, эллипсоид вращения, кольцо) или поверхностью вращения и одной или несколькими плоскостями (конус вращения, цилиндр вращения и т. д.). Изображения на плоскостях проекций, параллельных оси вращения, ограничены очерковыми линиями. Эти очерковые линии являются границей видимой и невидимой части геометрических тел. Поэтому при построении проекций линий, принадлежащих поверхностям вращения, необходимо строить точки, расположенные на очерках.

8.3.1. Цилиндр вращения.

П 1 , то на эту плоскость цилиндр будет проецироваться в виде окружности, а на две другие плоскости проекций в виде прямоугольников, ширина которых равна диаметру этой окружности. Такой цилиндр является проецирующим к П 1 .

Если ось вращения перпендикулярна П 2 , то на П 2 он будет проецироваться в виде окружности, а на П 1 и П 3 в виде прямоугольников.

Аналогичное рассуждение при положении оси вращения, перпендикулярном П 3 (рис.8.3).

Цилиндр Ф пересекается с плоскостями Р, S , L и Г (рис.8.3).

2 ГПЗ, 1 алгоритм (Модуль №3)

Ф ^ П 3

Р, S, L, Г ^ П 2

Ф Ç Р = а (6 5 и )

Ф ^ П 3 Þ Ф 3 = а 3 (6 3 =5 3 и = )

а 2 и а 1 строятся по принадлежности к поверхности Ф .

Ф Ç S = b (5 4 3 )

Ф Ç S = с (2 3 ) Рассуждения аналогичны предыдущему.

Ф Г = d (12 и

Задачи на рисунках 8.4, 8.5, 8.6 решаются аналогично задаче на рис.8.3, так как цилиндр

везде профильно-проецирующий, а отверстия - поверхности проецирующие относительно

П 1 - 2ГПЗ, 1 алгоритм (Модуль №3).

Если оба цилиндра имеют одинаковые диаметры (рис.8.7), то линиями пересечения их будут два эллипса (теорема Монжа, модуль №3). Если оси вращения этих цилиндров лежат в плоскости, параллельной одной из плоскостей проекций, то на эту плоскость эллипсы будут проецироваться в виде пересекающихся отрезков прямых.

8.3.2.Конус вращения

Задачи на рисунках 8.8, 8.9, 8.10, 8.11, 8.12 -2 ГПЗ (модуль №3) решаются по 2 алгоритму, так как поверхность конуса не может быть проецирующей, а секущие плоскости везде фронтально-проецирующие.

На рисунке 8.13 изображен конус вращения (тело), пересеченный двумя фронтально-проецирующими плоскостями Г и L . Линии пересечения строят по 2 алгоритму.

На рисунке 8.14 поверхность конуса вращения пересекается с поверхностью профильно-проецирующего цилиндра.

2 ГПЗ, 2 алгоритм решения (модуль №3), то есть профильная проекция линии пересечения есть на чертеже, она совпадает с профильной проекцией цилиндра. Две другие проекции линии пересечения строят по принадлежности конусу вращения.

Рис.8.14

8.3.3. Сфера.

Поверхность сферы пересекается с плоскостью и со всеми поверхностями вращения с ней, по окружностям. Если эти окружности параллельны плоскостям проекций, то проецируются на них в окружность натуральной величины, а если не параллельны, то в виде эллипса.

Если оси вращения поверхностей пересекаются и параллельны одной из плоскостей проекций, то на эту плоскость все линии пересечения - окружности проецируются в виде отрезков прямых.

На рис. 8.15 - сфера, Г - плоскость, L - цилиндр, Ф - усеченный конус.

S Ç Г = а - окружность;

S Ç L =b - окружность;

S Ç Ф =с - окружность.

Так как оси вращения всех пересекающихся поверхностей параллельны П 2 , то все линии пересечения - окружности на П 2 проецируются в отрезки прямых.

На П 1 : окружность "а" проецируется в истинную величину так как параллельна ей; окружность "b" проецируется в отрезок прямой, так как параллельна П 3 ; окружность"с" проецируется в виде эллипса, который строится по принадлежности сфере.

Сначала строятся точки 1, 7 и 4, которые определяют малую и большую оси эллипса. Затем строит точку 5 , как лежащую на экваторе сферы.

Для остальных точек (произвольных) проводят окружности (параллели) на поверхности сферы и по принадлежности им определяются горизонтальные проекции точек, лежащих на них.

9. Примеры выполнения заданий.

Задача 4 .Построить три вида детали с необходимыми разрезами и нанести размеры.

Задача 5. Построить три вида детали и выполнить необходимые разрезы.

10.Аксонометрия

10.1. Краткие теоретические сведения об аксонометрических проекциях

Комплексный чертеж, составленный из двух или трех проекций, обладая свойствами обратимости, простоты и др., вместе с тем имеет существенный недостаток: ему недостает наглядности. Поэтому, желая дать более наглядное представление о предмете, наряду с комплексным чертежом приводят аксонометрический, широко используемый при описании конструкций изделий, в руководствах по эксплуатации, в схемах сборки, для пояснений чертежей машин, механизмов и их деталей.

Сравните два изображения - ортогональный чертеж и аксонометрический одной и той же модели. На каком изображении легче прочитать форму? Конечно на аксонометрическом изображении. (рис.10.1)

Сущность аксонометрического проецирования состоит в том, что геометрическая фигура вместе с осями прямоугольных координат, к которым она отнесена в пространстве, параллельно проецируется на некоторую плоскость проекций, называемую аксонометрическая плоскость проекций, или картинная плоскость.

Если отложить на осях координат x,y и z отрезок l (lx,ly,lz ) и спроецировать на плоскость П ¢ , то получим аксонометрические оси и на них отрезки l"x, l"y, l"z (рис.10.2)

lx, ly, lz - натуральные масштабы.

l = lx = ly = lz

l"x, l"y, l"z - аксонометрические масштабы.

Полученную совокупность проекций на П¢ называют аксонометрией.

Отношение длины аксонометрических масштабных отрезков к длине натуральных масштабных отрезков называют показателем или коэффициентом искажения по осям, которые обозначаются Кx, Ky, Kz.

Виды аксонометрических изображений зависят:

1. От направления проецирующих лучей (они могут быть перпендикулярны П" - тогда аксонометрия будет называться ортогональной (прямоугольной) или расположены под углом не равным 90°- косоугольная аксонометрия).

2. От положения осей координат к аксонометрической плоскости.

Здесь возможны три случая: когда все три оси координат составляют с аксонометрической плоскостью проекций некоторые острые углы (равные и неравные) и когда одна или две оси ей параллельны.

В первом случае применяется только прямоугольное проецирование, (s ^ П") во втором и третьем - только косоугольное проецирование (s П") .

Если оси координат ОХ, ОY,OZ не параллельны аксонометрической плоскости проекций П" , то будут ли они проецироваться на нее в натуральную величину? Конечно, нет. Изображение прямых в общем случае всегда меньше натуральной величины.

Рассмотрим ортогональный чертеж точки А и ее аксонометрическое изображение.

Положение точки определяют три координаты – Х А, Y А, Z A , полученные путем измерения звеньев натуральной ломаной ОА Х - А Х А 1 – А 1 А (рис.10.3).

A" - главная аксонометрическая проекция точки А ;

А - вторичная проекция точки А (проекция проекции точки).

Коэффициентами искажения по осям Х", Y" и Z" будут:

k x = ; k y = ; k y =

В ортогональной аксонометрии эти показатели равны косинусам углов наклона осей координат к аксонометрической плоскости, а следовательно, они всегда меньше единицы.

Их связывает формула

k 2 x + k 2 y + k 2 z = 2 (I)

В косоугольной аксонометрии показатели искажения связаны формулой

k x + k y + k z = 2+ctg a (III)

т.е. любой из них может быть меньше, равен или больше единицы (здесь a- угол наклона проецирующих лучей к аксонометрической плоскости). Обе формулы - вывод из теоремы Польке.

Теорема Польке: аксонометрические оси на плоскости чертежа (П¢) и масштабы на них могут быть выбраны совершенно произвольно.

(Следовательно, аксонометрическая система (О" X" Y" Z" ) в общем случае определяется пятью независимыми параметрами: тремя аксонометрическими масштабами и двумя углами между аксонометрическими осями).

Углы наклона натуральных осей координат к аксонометрической плоскости проекций и направление проецирования могут быть выбраны произвольно, следовательно возможно множество видов ортогональных и косоугольных аксонометрий.

Их разделяют на три группы:

1. Все три показателя искажения равны (k x = k y = k z). Этот вид аксонометрии называют изометрией . 3k 2 =2; k= » 0,82 - теоретический коэффициент искажения. Согласно ГОСТ 2.317-70 можно пользоваться К=1 - приведенный коэффициент искажения.

2. Два каких-либо показателя равны (например, kx=ky kz). Этот вид аксонометрии называется диметрией . k x = k z ; k y = 1/2k x 2 ; k x 2 +k z 2 + k y 2 /4 = 2; k = » 0,94; k x = 0,94; ky = 0,47; kz = 0,94 - теоретические коэффициенты искажения. Согласно ГОСТ 2.317-70 коэффициенты искажения могут быть приведенными - k x =1; k y =0,5; k z =1.

3. 3. Все три показателя различны (k x ¹ k y ¹ k z). Этот вид аксонометрии называют триметрией .

На практике применяют несколько видов как прямоугольной, так и косоугольной аксонометрии с наиболее простыми соотношениями между показателями искажений.

Из ГОСТ2.317-70 и различных видов аксонометрических проекций рассмотрим ортогональные изометрию и диметрию, а также косоугольную диметрию, как наиболее часто применяющиеся.

10.2.1. Прямоугольная изометрия

В изометрии все оси наклонены к аксонометрической плоскости под одним и тем же углом, следовательно угол между осями (120°) и коэффициент искажения будет одинаков. Выбираем масштаб 1: 0,82=1,22; М 1,22: 1.

Для удобства построения пользуются приведенными коэффициентами и тогда на всех осях и линиях им параллельных откладываются натуральные размеры. Изображения таким образом становятся больше, но на наглядности это не отражается.

Выбор вида аксонометрии зависит от формы изображаемой детали. Проще всего строить прямоугольную изометрию, поэтому такие изображения встречаются чаще. Однако, при изображении деталей, включающих четырехугольные призмы и пирамиды, их наглядность уменьшается. В этих случаях лучше выполнять прямоугольную диметрию.

Косоугольную диметрию следует выбирать для деталей, имеющих большую длину при небольшой высоте и ширине (типа вала) или когда одна из сторон детали содержит наибольшее число важных особенностей.

В аксонометрических проекциях сохраняются все свойства параллельных проекций.

Рассмотрим построение плоской фигуры АВСDE .

Прежде всего построим оси в аксонометрии. На рис.10.4 представлено два способа построения аксонометрических осей в изометрии. На рис.10.4 а показано построение осей при помощи циркуля, а на рис.10.4б - построение при помощи равных отрезков.

Рис.10.5

Фигура АВСDЕ лежит в горизонтальной плоскости проекций, которая ограничена осями ОХ и ОY (рис.10.5а). Строим эту фигуру в аксонометрии (рис.10.5б).

Каждая точка, лежащая в плоскости проекций, сколько имеет координат? Две.

Точка, лежащая в горизонтальной плоскости - координаты Х и Y .

Рассмотрим построение т.А . С какой координаты начнем построение? С координаты Х А .

Для этого замеряем на ортогональном чертеже величину ОА Х и откладываем на оси Х" , получим точку А Х " . А Х А 1 какой оси параллельна? Оси Y . Значит из т. А Х " проводим прямую параллельную оси Y " и откладываем на ней координату Y A . Полученная точка А" и будет аксонометрической проекцией т.А .

Аналогично строятся все остальные точки. Точка С лежит на оси ОY , значит имеет одну координату.

На рисунке 10.6 задана пятигранная пирамида, у которой основанием является этот же пятиугольник АВСDЕ. Что нужно достроить, чтобы получилась пирамида? Надо достроить точку S , которая является ее вершиной.

Точка S - точка пространства, поэтому имеет три координаты Х S , Y S и Z S . Сначала строится вторичная проекция S (S 1), а затем все три размера переносятся с ортогонального чертежа. Соединив S" c A", B", C", D" и E ", получим аксонометрическое изображение объемной фигуры - пирамиды.

10.2.2. Изометрия окружности

Окружности проецируются на плоскость проекций в натуральную величину, когда они параллельны этой плоскости. А так как все плоскости наклонены к аксонометрической плоскости, то окружности, лежащие на них, будут проецироваться на эту плоскость в виде эллипсов. Во всех видах аксонометрий эллипсы заменяются овалами.

При изображении овалов надо, прежде всего, обратить внимание на построение большой и малой оси. Начинать надо с определения положения малой оси, а большая ось всегда ей перпендикулярна.

Существует правило: малая ось совпадает с перпендикуляром к этой плоскости, а большая ось ей перпендикулярна или направление малой оси совпадает с осью, не существующей в этой плоскости, а большая ей перпендикулярна (рис.10.7)

Большая ось эллипса перпендикулярна той координатной оси, которая отсутствует в плоскости окружности.

Большая ось эллипса равна 1,22 ´ d окр; малая ось эллипса равна 0,71 ´ d окр.

На рисунке 10.8 в плоскости окружности отсутствует ось Z Z ".

На рисунке 10.9 в плоскости окружности отсутствует ось Х , поэтому большая ось перпендикулярна оси Х ".

А теперь рассмотрим, как вычерчивается овал в одной из плоскостей, например, в горизонтальной плоскости XY . Существует множество способов построения овала, познакомимся с одним из них.

Последовательность построения овала следующая (рис.10.10):

1. Определяется положение малой и большой оси.

2.Через точку пересечения малой и большой оси проводим линии, параллельные осям X" и Y" .

3.На этих линиях, а также на малой оси, из центра радиусом, равным радиусу заданной окружности, откладываем точки 1 и 2, 3 и 4, 5 и 6 .

4. Соединяем точки 3 и 5, 4 и 6 и отмечаем точки пересечения их с большой осью эллипса (01 и 02 ). Из точки 5 , радиусом 5-3 , и из точки 6 , радиусом 6-4 , проводим дуги между точками 3 и 2 и точками 4 и 1 .

5. Радиусом 01-3 проводим дугу, соединяющую точки 3 и 1 и радиусом 02-4 - точки 2 и 4 . Аналогично строятся овалы в других плоскостях (рис.10.11).

Для простоты построения наглядного изображения поверхности ось Z может совпадать с высотой поверхности, а оси X и Y с осями горизонтальной проекции.

Чтобы построить точку А , принадлежащую поверхности надо построить ее три координаты X A , Y A и Z A . Точка на поверхности цилиндра и других поверхностях строится аналогично (рис.10.13).

Большая ось овала перпендикулярна оси Y ".

При построении аксонометрии детали, ограниченной несколькими поверхностями, следует придерживаться следующей последовательности:

Вариант 1.

1. Деталь мысленно разбивается на элементарные геометрические фигуры.

2. Вычерчивается аксонометрия каждой поверхности, линии построения сохраняются.

3. Строится вырез 1/4 детали, чтобы показать внутреннюю конфигурацию детали.

4. Наносится штриховка по ГОСТ 2.317-70.

Рассмотрим пример построения аксонометрии детали, внешний контур которой состоит из нескольких призм, а внутри детали цилиндрические отверстия разных диаметров.

Вариант 2. (Рис. 10.5)

1. Строится вторичная проекция детали на плоскости проекций П.

2. Откладываются высоты всех точек.

3. Строится вырез 1/4 части детали.

4. Наносится штриховка.

Для данной детали более удобным для построения будет вариант 1.

10.3. Этапы выполнения наглядного изображения детали.

1. Деталь вписывается в поверхность четырехугольной призмы, размеры которой равны габаритным размерам детали. Эта поверхность называется обертывающей.

Выполняется изометрическое изображение этой поверхности. Обертывающая поверхность строится по габаритным размерам (рис.10.15 а ).

Рис. 10.15 а

2. Из этой поверхности вырезаются выступы, расположенные на верхней части детали по оси Х и строится призма высотой 34мм, одним из оснований которой будет верхняя плоскость обертывающей поверхности (рис.10.15б ).

Рис. 10.15б

3. Из оставшейся призмы вырезается нижняя призма с основаниями 45 ´35 и высотой 11мм (рис.10.15в ).

Рис. 10.15в

4. Строятся два цилиндрических отверстия, оси которых лежат на оси Z . Верхнее основание большого цилиндра лежит на верхнем основании детали, второе ниже на 26 мм. Нижнее основание большого цилиндра и верхнее основание малого лежат в одной плоскости. Нижнее основание малого цилиндра строится на нижнем основании детали (рис.10.15г ).

Рис. 10.15г

5. Выполняется вырез 1/4 части детали, чтобы открыть внутренний контур ее. Разрез выполняется двумя взаимно перпендикулярными плоскостями, то есть по осям Х и Y (рис.10.15д ).

Рис.10.15д

6. Выполняется обводка сечений и всей оставшейся части детали, а вырезанная часть убирается. Невидимые линии стираются, а сечения заштриховываются. Плотность штриховки должна быть такой же, как на ортогональном чертеже. Направление штриховых линий показано на рис10.15е соответствии с ГОСТ 2.317-69.

Линиями штриховки будут линии, параллельные диагоналям квадратов, лежащих в каждой координатной плоскости, стороны которых параллельны аксонометрическим осям.

Рис.10.15е

7. Существует особенность штриховки ребра жесткости в аксонометрии. По правилам

ГОСТ 2.305-68 в продольном разрезе ребро жесткости на ортогональном чертеже не

заштриховывается, а в аксонометрии заштриховывается.На рис.10.16 показан пример

штриховки ребра жесткости.

10.4Прямоугольная диметрия.

Прямоугольную диметрическую проекцию можно получить путем поворота и наклона координатных осей относительно П ¢ так, чтобы показатели искажения по осям X" и Z" приняли равное значение, а по оси Y" - вдвое меньшее. Показатели искажения "k x " и "k z " будут равны 0,94, а "k y "- 0,47.

На практике пользуются приведенными показателями, т.е. по осям X " и Z" откладывают натуральные размеры, а по оси Y "- в 2 раза меньше натуральных.

Ось Z" обычно располагают вертикально, ось X" - под углом 7°10¢ к горизонтальной линии, а ось Y" -под углом 41°25¢ к этой же линии (рис.12.17).

1. Строится вторичная проекция усеченной пирамиды.

2. Строятся высоты точек 1,2,3 и 4.

Проще всего строить ось Х ¢ , отложив на горизонтальной линии 8 равных частей и вниз по вертикальной линии 1 такую же часть.

Чтобы построить ось Y" под углом 41°25¢ , надо на горизонтальной линии отложить 8 частей, а на вертикальной 7 таких же частей (рис.10.17).

На рисунке 10.18 изображена усеченная четырехугольная пирамида. Чтобы построение ее в аксонометрии было проще, ось Z должна совпадать с высотой, тогда вершины основания ABCD будут лежат на осях Х и Y (А и С Î х , В и D Î y ). Сколько координат имеют точки 1 и? Две. Какие? Х и Z .

Эти координаты откладываются в натуральную величину. Полученные точки 1¢ и 3¢ соединяются с точками А¢ и С¢ .

Точки 2 и 4 имеют две координаты Z и Y . Так как высота у них одинаковая, то координата Z откладывается на оси Z" . Через полученную точку 0 ¢ проводится линия, параллельная оси Y , на которой по обе стороны от точки откладываются расстояние 0 1 4 1 уменьшенное в два раза.

Полученные точки 2 ¢ и 4 ¢ соединяются с точками В ¢ и D" .

10.4.1. Построение окружностей в прямоугольной диметрии.

Окружности, лежащие на плоскостях координат в прямоугольной диметрии, также как и в изометрии, будут изображаться в виде эллипсов. Эллипсы, расположенные на плоскостях между осями Х" и Y",Y" и Z" в приведенной диметрии будут иметь большую ось, равную 1,06d, а малую - 0,35d, а в плоскости между осями X" и Z" - большую ось тоже 1,06d, а малую 0,95d (рис.10.19).

Эллипсы заменяются четырехцентовыми овалами, как в изометрии.

10.5.Косоугольная диметрическая проекция (фронтальная)

Если расположить координатные оси Х и Y параллельно плоскости П¢, то показатели искажения по этим осям станут равным единице (к = т =1). Показатель искажения по оси Y обычно принимают равным 0,5. Аксонометрические оси X " и Z" составят прямой угол, ось Y" обычно проводят как биссектрису этого угла. Ось Х может быть направлена как вправо от оси Z ", так и влево.

Предпочтительно пользоваться правой системой, так как удобнее изображать предметы в рассеченном виде. В этом виде аксонометрии хорошо чертить детали, имеющие форму цилиндра или конуса.

Для удобства изображения этой детали ось Y надо совместить с осью вращения поверхностей цилиндров. Тогда все окружности будут изображаться в натуральную величину, а длина каждой поверхности будет уменьшаться в два раза (рис.10.21).

11.Наклонные сечения.

При выполнении чертежей деталей машин приходится нередко применять наклонные сечения.

При решении таких задач необходимо прежде всего уяснить: как должна быть расположена секущая плоскость и какие поверхности участвуют в сечении для того, чтобы деталь читалась лучше. Рассмотрим примеры.

Дана четырехгранная пирамида, которая рассекается наклонной фронтально-проецирующей плоскостью А-А (рис.11.1). Сечением будет четырехугольник.

Сначала строим проекции его на П 1 и на П 2 . Фронтальная проекция совпадает с проекцией плоскости, а горизонтальную проекцию четырехугольника строим по принадлежности пирамиде.

Затем строим натуральную величину сечения. Для этого вводится дополнительная плоскость проекций П 4 , параллельная заданной секущей плоскости А-А , на нее проецируем четырехугольник, а затем совмещаем его с плоскостью чертежа.

Эта четвертая основная задача преобразования комплексного чертежа (модуль №4, стр.15 или задача №117 из рабочей тетради по начертательной геометрии).

Построения выполняются в следующей последовательности (рис.11.2):

1. 1.На свободном месте чертежа проводим осевую линию, параллельную плоскости А-А .

2. 2.Из точек пересечения ребер пирамиды с плоскостью проводим проецирующие лучи, перпендикулярно секущей плоскости. Точки 1 и 3 будут лежать на линии, расположенной перпендикулярно осевой.

3. 3.Расстояние между точками 2 и 4 переносится с горизонтальной проекции.

4. Аналогично строится истинная величина сечения поверхности вращения - эллипс.

Расстояние между точками 1 и 5 -большая ось эллипса. Малую ось эллипса надо строить путем деления большой оси пополам (3-3 ).

Расстояние между точками 2-2, 3-3, 4-4 переносятся с горизонтальной проекции.

Рассмотрим более сложный пример, включающий многогранные поверхности и поверхности вращения (рис.11.3)

Задана четырехгранная призма. В ней расположены два отверстия: призматическое, расположенное горизонтально и цилиндрическое, ось которого совпадает с высотой призмы.

Секущая плоскость фронтально-проецирующая, поэтому фронтальная проекция сечения совпадает с проекцией этой плоскости.

Четырехугольная призма проецирующая к горизонтальной плоскости проекций, а значит и горизонтальная проекция сечения тоже есть на чертеже, она совпадает с горизонтальной проекцией призмы.

Натуральная величина сечения, в которое попадают обе призмы и цилиндр, строим на плоскости, параллельной секущей плоскости А-А (рис.11.3).

Последовательность выполнения наклонного сечения:

1. Проводится ось сечения, параллельно секущей плоскости, на свободном поле чертежа.

2. Строится сечение наружной призмы: длина его переносится с фронтальной проекции, а расстояние между точками с горизонтальной.

3. Строится сечение цилиндра - часть эллипса. Сначала строятся характерные точки, определяющие длину малой и большой оси (5 4 , 2 4 -2 4 ) и точки, ограничивающие эллипс (1 4 -1 4 ) , затем дополнительные точки (4 4 -4 4 и 3 4 -3 4).

4. Строится сечение призматического отверстия.

5. Наносится штриховка под углом 45° к основной надписи, если она не совпадает с линиями контура, а если совпадает, то угол штриховки может быть 30° или 60°. Плотность штриховки на сечении такая же, как на ортогональном чертеже.

Наклонное сечение можно поворачивать. При этом обозначение сопровождается знаком . Также разрешается показать половину фигуры наклонного сечения, если она симметрична. Подобное расположение наклонного сечения показано на рис.13.4. Обозначения точек при построении наклонного сечения можно не ставить.

На рис.11.5 дано наглядное изображение заданной фигуры с сечением плоскостью А-А .

Контрольные вопросы

1. Что называют видом?

2. Как получают изображение предмета на плоскости?

3.Какие названия присвоены видам на основных плоскостях проекций?

4.Что называют главным видом?

5.Что называют дополнительным видом?

6. Что называют местным видом?

7.Что называют разрезом?

8. Какие обозначения и надписи установлены для разрезов?

9. В чем отличие простых разрезов от сложных?

10.Какая соблюдается условность при выполнении ломаных разрезов?

11. Какой разрез называется местным?

12. При каких условиях допускается совмещать половину вида и половину разреза?

13. Что называют сечением?

14. Как располагают сечения на чертежах?

15. Что называют выносным элементом?

16. Как упрощенно показывают на чертеже повторяющиеся элементы?

17. Как условно сокращают на чертеже изображение предметов большой длины?

18. Чем отличаются аксонометрические проекции от ортогональных?

19. Каков принцип образования аксонометрических проекций?

20. Какие установлены виды аксонометрических проекций?

21. Каковы особенности изометрии?

22. Каковы особенности диметрии?

Библиографический список

1. Суворов, С.Г.Машиностроительное черчение в вопросах и ответах: (справочник)/ С.Г.Суворов, Н.С.Суворова.-2-е изд. перераб. и доп. - М.: Машиностроение,1992.-366с.

2. Федоренко В.А. Справочник по машиностроительному черчению/ В.А.Федоренко, А.И.Шошин,- Изд.16-стер.;м Перепеч. с 14-го изд.1981г.-М.: Альянс,2007.-416с.

3.Боголюбов, С.К.Инженерная графика: Учебник для сред. спец. учеб. заведений по спец. техн. профиля/ С.К.Боголюбов.-3-е изд., испр. и доп.-М.: Машиностроение, 2000.-351с.

4.Вышнепольский, И.С.Техническое черчение е. Учеб. для нач. проф. образования/ И.С.Вышнепольский.-4-е изд., перераб. и доп.; Гриф МО.- М.: Высш. шк.: Академия, 2000.-219с.

5. Левицкий, В.С.Машиностроительное черчение и автоматизация выполнения чертежей: учеб. для втузов/В.С.Левицкий.-6-е изд., перераб. и доп.; Гриф МО.-М.: Высш. шк., 2004.-435с.

6. Павлова, А.А. Начертательная геометрия: учеб. для вузов/ А.А. Павлова-2-е изд., перераб. и доп.; Гриф МО.- М.: Владос, 2005.-301с.

7. ГОСТ 2.305-68*. Изображения: виды, разрезы, сечения/Единая система конструкторской документации. - М.: Изд-во стандартов, 1968.

8. ГОСТ 2.307-68. Нанесение размеров и предельных отклонений/Единая система

конструкторской документации. - М.: Изд-во стандартов,1968.

Для выполнения изометрической проекции любой детали не­обходимо знать правила построения изометрических проекций плоских и объемных геометрических фигур.

Правила построения изометрических проекций геометриче­ских фигур. Построение любой плоской фигуры следует начи­нать с проведения осей изометрических проекций.

При построении изометрической проекции квадрата (рис. 109) из точки О по аксонометрическим осям откладывают в обе сто­роны половину длины стороны квадрата. Через полученные за­сечки проводят прямые, параллельные осям.

При построении изометрической проекции треугольника (рис. 110) по оси X от точки 0 в обе стороны откладывают отрезки, равные половине стороны треугольника. По оси У от точки О откладывают высоту треугольника. Соединяют полученные за­сечки отрезками прямых.

Рис. 109. Прямоугольная и изометрические проекции квадрата



Рис. 110. Прямоугольная и изометрические проекции треугольника

При построении изометрической проекции шестиугольника (рис. 111) из точки О по одной из осей откладывают (в обе сторо­ны) радиус описанной окружности, а по другой - H/2. Через полученные засечки проводят прямые, параллельные одной из осей, и на них откладывают длину стороны шестиугольника. Со­единяют полученные засечки отрезками прямых.


Рис. 111. Прямоугольная и изометрические проекции шестиугольника



Рис. 112. Прямоугольная и изометрические проекции круга

При построении изометрической проекции круга (рис. 112) из точки О по осям координат откладывают отрезки, равные его радиусу. Через полученные засечки проводят прямые, парал­лельные осям, получая аксонометрическую проекцию квадрата. Из вершин 1, 3 проводят дуги CD и KL радиусом 3С. Соединяют точки 2 с 4, 3 с С и 3 с D. В пересечениях прямых получаются центры а и б малых дуг, проведя которые получают овал, заме­няющий аксонометрическую проекцию круга.

Используя описанные построения, можно выполнить аксоно­метрические проекции простых геометрических тел (табл. 10).

10. Изометрические проекции простых геометрических тел



Способы построения изометрической проекции детали:

1. Способ построения изометрической проекции детали от формообразующей грани используется для деталей, форма кото­рых имеет плоскую грань, называемую формообразующей; ши­рина (толщина) детали на всем протяжении одинакова, на боко­вых поверхностях отсутствуют пазы, отверстия и другие элемен­ты. Последовательность построения изометрической проекции заключается в следующем:

1) построение осей изометрической проекции;

2) построение изометрической проекции формообразующей грани;

3) построение проекций остальных граней посредством изо­бражения ребер модели;


Рис. 113. Построение изометрической проекции детали, начиная от фор­мообразующей грани

4) обводка изометрической проекции (рис. 113).

  1. Способ построения изометрической проекции на основе по­следовательного удаления объемов используется в тех случаях, когда отображаемая форма получена в результате удаления из исходной формы каких-либо объемов (рис. 114).
  2. Способ построения изометрической проекции на основе по­следовательного приращения (добавления) объемов применяется для выполнения изометрического изображения детали, форма которой получена из нескольких объемов, соединенных опреде­ленным образом друг с другом (рис. 115).
  3. Комбинированный способ построения изометрической про­екции. Изометрическую проекцию детали, форма которой полу­чена в результате сочетания различных способов формообразо­вания, выполняют, используя комбинированный способ построе­ния (рис. 116).

Аксонометрическую проекцию детали можно выполнять с изображением (рис. 117, а) и без изображения (рис. 117, б) неви­димых частей формы.


Рис. 114. Построение изометрической проекции детали на основе последовательного удаления объемов


Рис. 115 Построение изометрической проекции детали на основе последовательного приращения объемов


Рис. 116. Использование комбинированного способа построения изометрической проекции детали


Рис. 117. Варианты изображения изометрических проекций детали: а - с изображением невидимых частей;
б - без изображения невидимых частей

Построение аксонометрического изображения детали, чертеж которой приведен на Рис.а.

Все аксонометрические проекции должны выполняться по ГОСТ 2.317-68.

Аксонометрические проекции получаются проецированием предмета и связанной с ним системы координат на одну плоскость проекций. Аксонометрии делятся на прямоугольные и косоугольные.

Для прямоугольных аксонометрических проекций проецирование осуществляется перпендикулярно плоскости проекций, причем предмет располагается так, чтобы были видны все три плоскости предмета. Это возможно, например, при расположении осей, как на прямоугольной изометрической проекции, для которой все оси проекций располагаются под углом 120 градусов (см. рис.1). Слово «изометрическая» проекция означает, что коэффициент искажения по всем трем осям одинаковый. Согласно стандарту коэффициент искажения по осям можно принять равным 1. Коэффициент искажения – это отношение размера отрезка проекции к истинному размеру отрезка на детали, измеренного вдоль оси.

Построим аксонометрию детали. Для начала зададим оси, как для прямоугольной изометрической проекции. Начнем с основания. Отложим по оси х величину длины детали 45, а по оси у величину ширины детали 30. Из каждой точки четырехугольника поднимем верх вертикальные отрезки на величину высоты основания детали 7 (Рис.2). НА аксонометрических изображениях при нанесении размеров выносные линии проводят параллельно аксонометрическим осям, размерные линии – параллельно измеряемому отрезку.

Далее проводим диагонали верхнего основания и находим точку, через которую будет проходить ось вращения цилиндра и отверстия. Невидимые линии нижнего основания стираем, чтобы они не мешали нашему дальнейшему построению (Рис.3)

.

Недостаток прямоугольной изометрической проекции заключается в том, что окружности во всех плоскостях будут проецироваться на аксонометрическом изображении в эллипсы. Поэтому сначала научимся строить приближенно эллипсы.

Если вписать окружность в квадрат, то у нее можно отметь 8 характерных точек: 4 точки касания окружности и середины стороны квадрата и 4 точки пересечения диагоналей квадрата с окружностью (Рис.4,а). На рис.4,в и рис.4,б показан точный способ построения точек пересечения диагонали квадрата с окружностью. На рис.4,д показан приближенный способ. При построении аксонометрические проекции половина диагонали четырехугольника, в который спроецируется квадрат, разделится в таком же соотношении.

Переносим эти свойства на нашу аксонометрию (рис.5). Строим проекцию четырехугольника, в которую проецируется квадрат. Далее строим эллипс рис.6.

Далее поднимаемся на высоту 16мм и переносим туда эллипс (Рис.7). Убираем лишние линии. Переходим к построению отверстий. Для этого строим на верху эллипс, в который спроецируется отверстие диаметром 14 (Рис.8). Далее, чтобы показать отверстие диаметром 6мм необходимо мысленно вырезать четверть детали. Для этого построим середину каждой стороны, как на рис.9. Далее строим эллипс, соответствующий окружности диаметра 6 на нижнем основании, а затем на расстоянии 14 мм от верхней части детали рисуем уже два эллипса (один соответствующий окружности диаметром 6, а другой соответствующий окружности диаметром 14) Рис.10. Далее выполняем разрез четверти детали и убираем невидимые линии (Рис.11).

Перейдем к построению ребра жесткости. Для этого на верхней плоскости основания отмеряем 3 мм от края детали и проводим отрезок длиной половине толщины ребра (1.5мм) (Рис.12), также намечаем ребро на дальней стороне детали. Угол 40 градусов нам при построении аксонометрии не подходит, поэтому рассчитываем второй катет (он будет равен 10.35мм) и по нему строим вторую точку угла по плоскости симметрии. Чтобы построить границу ребра, строим прямую на расстоянии 1.5мм от оси на верхней плоскости детали, затем проводим линии параллельно оси х до пересечения с внешним эллипсом и опускаем вертикальную прямую. Через нижнюю точку границы ребра проводим прямую параллельно ребру по плоскости разреза (Рис.13) до пересечения с вертикальной прямой. Дальше соединяем точку пересечения с точкой в плоскости разреза. Для построения дальнего ребра проводим прямую параллельную оси Х на расстоянии 1.5мм до пересечения с внешним эллипсом. Дальше находим, на каком расстоянии находится верхняя точка границы ребра (5.24мм) и такое же расстояние откладываем на вертикальной прямой с дальней стороны детали (см. Рис.14) и соединяем с дальней нижней точкой ребра.

Убираем лишние линии и штрихуем плоскости сечений. Линии штриховки сечений в аксонометрических проекциях наносят параллельно одной из диагоналей проекций квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (Рис.15).

Для прямоугольной изометрической проекции линии штриховки будут параллельны линиям штриховки, показанным на схеме в правом верхнем углу (Рис.16). Осталось изобразить боковые отверстия. Для этого размечаем центры осей вращения отверстий, и строим эллипсы, как было указано выше. Аналогично строим радиусы скруглений (Рис.17). Итоговая аксонометрия показана на рис.18.

Для косоугольных проекций проецирование осуществляется под углом к плоскости проекций, отличным от 90 и 0 градусов. Примером косоугольной проекции может служить косоугольная фронтальная диметрическая проекция. Она хороша тем, что на плоскость заданную осями X и Z окружности, параллельные этой плоскости будут проецироваться в истинную величину (угол между осями X и Z 90 градусов, ось Y наклонена под углом 45 градусов к горизонту). «Диметрическая» проекция означает, что коэффициенты искажения по двум осям X и Z одинаковый, по оси Y коэффициент искажения меньше в два раза.

При выборе аксонометрической проекции необходимо стремиться, чтобы наибольшее количество элементов проецировалось без искажения. Поэтому при выборе положения детали в косоугольной фронтальной диметрической проекции ее надо расположить так, чтобы оси цилиндра и отверстий были перпендикулярны фронтальной плоскости проекций.

Схема расположения осей и аксонометрическое изображение детали «Стойка» в косоугольной фронтальной диметрической проекции приведена на рис.18.

ТЕОРеТИЧЕСКАЯ ЧАСТЬ

Для наглядного изображения изделий или их составных частей применяются аксонометрические проекции. В настоящей работе рассматриваются правила построения прямоугольной изометрической проекции.

Для прямоугольных проекций, когда угол между проецирующими лучами и плоскостью аксонометрических проекций равен 90°, коэффициенты искажения связаны следующим соотношением:

k 2 + т 2 + п 2 = 2. (1)

Для изометрической проекции коэффициенты искажения равны, следовательно, k = т = п.

Из формулы (1) получается

3k 2 =2; ; k = т = п 0,82.

Дробность коэффициентов искажений приводит к усложнению расчетов размеров, необходимых при построении аксонометрического изображения. Для упрощения этих расчетов используются приведенные коэффициенты искажений:

для изометрической проекции коэффициенты искажения составляют:

k = т = n = 1.

При использовании приведенных коэффициентов искажения аксонометрическое изображение предмета получается увеличенным против его натуральной величины для изометрической проекции в 1,22 раза. масштаб изображения составляет: для изометрии – 1,22: 1.

Схемы расположения осей и величины приведенных коэффициентов искажений для изометрической проекции изображены на рис. 1. Там же указаны величины уклонов, которыми можно пользоваться для определения направления аксонометрических осей при отсутствии соответствующего инструмента (транспортира или угольника с углом 30°).

Окружности в аксонометрии, в общем случае, проецируются в виде эллипсов, причем при использовании действительных коэффициентов искажений большая ось эллипса по величине равна диаметру окружности. При использовании приведенных коэффициентов искажений линейные величины получаются увеличенными, и чтобы привести к одному масштабу все элементы изображаемой в аксонометрии детали, большая ось эллипса для изометрической проекции принимается равной 1,22 диаметра окружности.

Малая ось эллипса в изометрии для всех трех плоскостей проекций равна 0,71 диаметра окружности (рис. 2).

Большое значение для правильного изображения аксонометрической проекции предмета имеет расположение осей эллипсов относительно аксонометрических осей. Во всех трех плоскостях прямоугольной изометрической проекции большая ось эллипса должна быть направлена перпендикулярно оси, отсутствующей в данной плоскости. Например, у эллипса, расположенного в плоскости xОz, большая ось направлена перпендикулярно оси у, проецирующейся на плоскость xОz в точку; у эллипса, расположенного в плоскости yОz, - перпендикулярно оси х и т. д. На рис. 2 приведена схема расположения эллипсов в различных плоскостях для изометрической проекции. Здесь же приведены коэффициенты искажений для осей эллипсов, в скобках указаны величины осей эллипсов при использовании действительных коэффициентов.

На практике построение эллипсов заменяют построением четырехцентровых овалов. На рис. 3 показано построение овала в плоскости П 1. Большая ось эллипса АВ направлена перпендикулярно отсутствующей оси z , а малая ось эллипса CD – совпадает с ней. Из точки пересечения осей эллипса проводят окружность радиусом, равным радиусу окружности. На продолжении малой оси эллипса находят первые два центра дуг сопряжения (О 1 и О 2), из которых радиусом R 1 = О 1 1 = О 2 2 проводят дуги окружностей. На пересечении большой оси эллипса с линиями радиуса R 1 определяют центры (О 3 и О 4), из которых радиусом R 2 = О 3 1 = О 4 4 проводят замыкающие дуги сопряжения.

Обычно аксонометрическую проекцию предмета строят по ортогональному чертежу, причем построение получается более простым, если положение детали относительно осей координат х , у и z остается таким же, как и на ортогональном чертеже. Главный вид предмета следует располагать на плоскости xОz.

Построение начинают с проведения аксонометрических осей и изображения плоской фигуры основания, затем строят основные контуры детали, наносят линии уступов, углублений, выполняют отверстия в детали.

При изображении разрезов в аксонометрии на аксонометрических проекциях, как правило, невидимый контур штриховыми линиями не показывают. Для выявления внутреннего контура детали, так же как и на ортогональном чертеже, в аксонометрии выполняют разрезы, но эти разрезы могут не повторять разрезы ортогонального чертежа. Чаще всего на аксонометрических проекциях, когда деталь представляет собой симметричную фигуру, вырезают одну четвертую или одну восьмую часть детали. На аксонометрических проекциях, как правило, не применяют полные разрезы, так как такие разрезы уменьшают наглядность изображения.

При выполнении аксонометрических изображений с разрезами линии штриховки сечений наносят параллельно одной из диагоналей проекций квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (рис. 4).

При выполнении разрезов секущие плоскости направляют только параллельно координатным плоскостям (xОz, yОz или хОу).



Способы построения изометрической проекции детали: 1. Способ построения изометрической проекции детали от формообразующей грани используется для деталей, форма кото­рых имеет плоскую грань, называемую формообразующей; ши­рина (толщина) детали на всем протяжении одинакова, на боко­вых поверхностях отсутствуют пазы, отверстия и другие элемен­ты. Последовательность построения изометрической проекции заключается в следующем: 1) построение осей изометрической проекции; 2) построение изометрической проекции формообразующей грани; 3) построение проекций остальных граней посредством изо­бражения ребер модели; 4) обводка изометрической проекции (рис. 5).
Рис. 5. Построение изометрической проекции детали, начиная от фор­мообразующей грани 2. Способ построения изометрической проекции на основе по­следовательного удаления объемов используется в тех случаях, когда отображаемая форма получена в результате удаления из исходной формы каких-либо объемов (рис. 6). 3. Способ построения изометрической проекции на основе по­следовательного приращения (добавления) объемов применяется для выполнения изометрического изображения детали, форма которой получена из нескольких объемов, соединенных опреде­ленным образом друг с другом (рис. 7). 4. Комбинированный способ построения изометрической про­екции. Изометрическую проекцию детали, форма которой полу­чена в результате сочетания различных способов формообразо­вания, выполняют, используя комбинированный способ построе­ния (рис. 8). Аксонометрическую проекцию детали можно выполнять с изображением (рис. 9, а) и без изображения (рис. 9, б) неви­димых частей формы.
Рис. 6. Построение изометрической проекции детали на основе последовательного удаления объемов
Рис. 7 Построение изометрической проекции детали на основе последовательного приращения объемов
Рис. 8. Использование комбинированного способа построения изометрической проекции детали
Рис. 9. Варианты изображения изометрических проекций детали: а - с изображением невидимых частей; б - без изображения невидимых частей

ПРИМЕР ВЫПОЛНЕНИЯ ЗАДАНИЯ ПО АКСОНОМЕТРИИ

Построить прямоугольную изометрию детали по выполненному чертежу простого или сложного разреза на выбор студента. Деталь строится без невидимых частей с вырезом ¼ части по осям.

На рисунке показано оформление чертежа аксонометрической проекции детали после удаления лишних линий, обводки контуров детали и штриховки сечений.

ЗАДАНИЕ №5 СБОРОЧНЫЙ ЧЕРТЕЖ ВЕНТИЛЯ

Инструкция

Постройте с помощью линейки и транспортира или циркуля и линейки для прямоугольной (отрогональной) изометрической проекции. В этой разновидности аксонометрической проекции все три оси - OX, OY, OZ - между собой углы в 120°, при этом ось ОZ имеет вертикальную направленность.

Для простоты чертите изометрическую проекцию без искажений по осям, так как принято изометрический коэффициент искажения приравнивать к единице. Кстати, само «изометрический» в переводе «равный размер». На самом деле при отображении трехмерного объекта на плоскость отношение длины любого спроецированного отрезка, параллельного координатной оси, к действительной длине этого отрезка равно для всех трех осей 0,82. Поэтому линейные размеры предмета в изометрии (при принятом коэффициенте искажения) увеличиваются в 1,22 раза. При этом изображение остается правильным.

Начните проецировать предмет на аксонометрическую плоскость с его верхней грани. Отмерьте по оси OZ от центра пересечения осей координат высоту детали. Проведите тонкими линиями оси Х и Y через эту точку. Из этой же точки отложите половину отрезка длины детали по одной оси (например, по оси Y). Проведите через найденную точку отрезок нужного размера (ширина детали) параллельно другой оси (OX).

Теперь вдоль другой оси (OX) отложите половину ширины. Через эту точку проведите отрезок нужной величины (длина детали) параллельно первой оси (OY). Два начерченных отрезка должны пересечься. Достройте оставшуюся часть верхней грани.

Если в этой грани имеется круглое отверстие, начертите его. В изометрии окружность изображается в виде эллипса, потому что мы смотрим на нее под углом. Размеры осей этого эллипса рассчитайте исходя из диаметра окружности. Они равны: a = 1,22D и b = 0,71D. Если окружность располагается на горизонтальной плоскости, ось а эллипса всегда горизонтальная, ось b - вертикальная. При этом расстояние между точками эллипса на оси Х или Y всегда равно диаметру окружности D.

Начертите из трех углов верхней грани вертикальные ребра, равные высоте детали. Соедините ребра через их нижние точки.

Если у фигуры есть прямоугольное отверстие, начертите его. Отложите из центра ребра верхней грани вертикальный (параллельно оси Z) отрезок нужной длины. Через полученную точку начертите отрезок требуемого размера параллельно верхней грани, а значит и оси X. Из крайних точек этого отрезка начертите вертикальные ребра нужной величины. Соедините их нижние точки. Проведите от нижней правой точки нарисованного ромба внутреннее ребро отверстия, которое должно быть параллельно оси Y.

Источники:

  • Как начертить изометрию?
  • деталь в изометрической проекции

Сложно представить себе, какой была бы современная компьютерная игра без трехмерных объектов и объемных панорам. Но чтобы создать даже самый незначительный объект компьютерной игры, к примеру, маленькое строение, нужно знать, как нарисовать изометрию.

Вам понадобится

  • Персональный компьютер, программа Adobe ImageReady или Photoshop.

Инструкция

Постройте основной контур куба, который будет основой изометрического строения.

Достройте сверху этого прямоугольника несколько параллельно расположенных по отношению друг к другу квадратов, края которых соедините между собой. Эта верхушка станет крышей объекта.

Залейте получившуюся форму строения однородным цветом на ваш выбор.

Закрасьте каждую сторону строения, используя три цвета: базовый цвет, его темный оттенок и светлый оттенок.

Видео по теме

Обратите внимание

При закрашивании моделируемого изометрического объекта тремя оттенками не ошибитесь с углом падения света. Неправильный выбор угла падения света испортит изображаемый объект, то есть, вы не сможете правильно смоделировать это строение. Представьте себе, что источник света расположен в верхнем левом углу монитора и, отталкиваясь от этого, выбирайте соответствующий оттенок для заливки той либо иной грани строения.

Полезный совет

При освещении внутренних граней строения создается холодный эффект. Несмотря на то, что рисование черных краев создает эффект поглощения, использование такого приема при рисовании изометрии позволяет добиться эффекта завершенности моделируемого объекта.

Источники:

  • Урок построения изометрического дома.

Выполнение чертежей сложных деталей и узлов часто сопровождается введением дополнительных видов, разрезов, сечений, которые необходимо разместить на свободном поле чертежа таким образом, чтобы его можно было легко прочесть и найти всю необходимую информацию об изделии.

Инструкция

Перед выполнением чертежа проанализируйте, какое количество видов объекта вам понадобится для его корректного изображения. Оцените масштаб, в котором вы будете выполнять чертеж. Не забудьте о технических требований, который также нужно будет расположить на поле чертежа. Иногда такой занимает практически весь лист, на котором изображен чертеж. Исходя из этой информации подберите необходимый формат листа (А4, А3, А2 и т.д.).

Начертите основные виды с необходимыми разрезами и сечениями. Проставьте размеры. Расположите текст технических требований над основной надписью чертежа. Длина строки по величине не должна превышать длину рамки, в которую заключена основная надпись (не более 185мм). При выполнении чертежа старайтесь оставлять около 20% свободного места, если это возможно.

Для того, чтобы на имеющемся чертеже расположить другой чертеж, определите, что именно вы хотите изобразить. Скорее всего, под другим чертежом подразумевается дополнительный вид изображаемого объекта, разрез или сечение, которые дают информации о детали или узле. Помните, что разместить дополнительный чертеж на подписанной и сданной конструкторской документации вы сможете только выпустив извещение об изменении. До подписания чертежей в них можно вносить изменения.

Проанализируйте количество свободного места на поле основного чертежа, которое понадобится для размещения дополнительного вида. Примените масштаб уменьшения для дополнительного чертежа, если его при этом можно будет прочесть. Иногда свободного места на чертеже не хватает, тогда вводите еще один лист чертежа и располагайте дополнительный вид на нем. При этом не забудьте в графе «Листов» основной надписи чертежа указать на один лист больше.

Часто дополнительным чертежом бывает рисунок, на котором могут изображаться различные этапы выполнения проектируемого изделия: заделка и расположение выводов, клемм, схемы, установка объекта на испытательном стенде и т.д. В этом случае располагайте рисунок также на свободном поле чертежа в удобном масштабе.

Одна из самых увлекательных задач начертательной геометрии – построение третьего вида при заданных двух. Она требует вдумчивого подхода и педантичного измерения расстояний, поэтому не всегда дается с первого раза. Тем не менее, если тщательно следовать рекомендованной последовательности действий, построить третий вид вполне возможно, даже без пространственного воображения.

Вам понадобится

  • - лист бумаги;
  • - карандаш;
  • - линейка или циркуль.

Инструкция

В первую очередь постарайтесь по двум имеющимся видам определить форму отдельных частей изображенного предмета. Если на виде сверху изображен треугольник, то это может быть призма, конус вращения, треугольная или . Форму четырехугольника могут принять цилиндр, или треугольная призма или другие предметы. Изображение в форме круга может означать шар, конус, цилиндр или другие поверхности вращения. Так или иначе, попытайтесь представить общую форму предмета в целом.

Расчертите границы плоскостей, для удобства переноса линий. Начните с самого удобного и понятного элемента. Возьмите любую точку, которую вы точно «видите» на обоих видах и перенесите ее на третий вид. Для этого опустите перпендикуляр на границы плоскостей и продолжите его на следующей плоскости. При этом учтите, что при переходе с вида слева на вид сверху (или наоборот), необходимо пользоваться циркулем или отмерять расстояние при помощи линейки. Таким образом, на месте вашего третьего вида пересекутся две прямые. Это и будет проекция выбранной точки на третий вид. Таким же образом можно сколько угодно точек, пока вам не станет понятным общий вид детали.

Проверьте правильность построения. Для этого измерьте размеры тех частей детали, которые отражаются полностью (например, стоящий цилиндр будет одного «роста» на виде слева и виде спереди). Для того, чтобы понять, ничего ли вы не забыли, постарайтесь посмотреть на вид спереди с позиции наблюдателя сверху и пересчитать (хотя бы примерно), сколько должно быть видно границ отверстий и поверхностей. Каждая прямая, каждая точка должны иметь отражение на всех видах. Если деталь симметрична, не забудьте отметить ось симметрии и проверить равенство обеих частей.

Удалите все вспомогательные линии, проверьте, чтобы все невидимые линии были отмечены пунктирной линией.

Построение изометрической проекции детали позволяет получить максимально подробное представление о пространственных характеристиках объекта изображения. Изометрия с вырезом части детали дополнительно к внешнему виду показывает внутреннее устройство предмета.

Вам понадобится

  • - набор чертежных карандашей;
  • - линейка;
  • - угольники;
  • - транспортир;
  • - циркуль;
  • - ластик.

Инструкция

Начертите оси тонкими линиями так, чтобы изображение разместилось по центру листа. В прямоугольной изометрии углы между осями составляют сто градусов. В горизонтальной косоугольной изометрии углы между осями X и Y составляют девяносто градусов. А между осями X и Z; Y и Z - сто тридцать пять градусов.

Начните выполнять с верхней поверхности изображаемой детали. От углов горизонтальных поверхностей проведите вниз вертикальные линии и отложите на этих линиях соответствующие линейные размеры с чертежа детали. В изометрии линейные размеры по всем трем осям остаются кратными единице. Последовательно соедините полученные точки на вертикальных линиях. Внешний контур детали готов. Выполните изображения имеющихся на гранях детали отверстий, пазов и пр.

Помните, что при изображении предметов в изометрии видимость криволинейных элементов будет искажаться. Окружность в изометрии изображается как эллипс. Расстояние между точками эллипса по осям изометрии равно диаметру окружности, а оси эллипса не совпадают с осями изометрии.

Если у предмета имеются скрытые полости или сложное внутреннее строение, выполните изометрическую проекцию с вырезом части детали. Вырез может быть простым или ступенчатым в зависимости от сложности детали.

Все действия должны выполняться с помощью чертежных инструментов - линейки, карандаша, циркуля и транспортира. Используйте несколько карандашей разной твердости. Твердый - для тонких линий, твердо-мягкий - для пунктирных и штрихпунктирных линий, мягкий - для основных линий. Не забудьте начертить и заполнить основную надпись и рамку в соответствии с ГОСТ. Также построение изометрии можно выполнять в специализированном программном обеспечении, таком как Компас, AutoCAD.

Источники:

  • черчение в изометрии

Все объекты окружающей действительности существуют в трехмерном пространстве. На чертежах их приходится изображать в двухмерной системе координат, и это не дает зрителю достаточного представления о том, как предмет выглядит в реальности. Поэтому в техническом черчении применяются проекции, позволяющие передать объем. Одна из них называется изометрической.

Вам понадобится

  • - бумага;
  • - чертежные принадлежности.

Инструкция

Построение изометрической проекции начните с расположения осей. Одна из них всегда будет вертикальной, и на чертежах она обычно как ось Z, Начальную ее точку принято обозначать как О. Продолжите ось ОZ вниз.

Положение остальных двух осей можно определить двумя способами, в зависимости от того, какие чертежные у вас есть. Если у вас имеется транспортир, отложите от оси ОZ в обе стороны углы, равные 120º. Проведите оси X и Y.

Если в вашем распоряжении только циркуль, начертите окружность произвольного радиуса с центром в точке О. Продолжите ось ОZ до ее второго пересечения с окружностью и поставьте точку, например, 1. Разведите ножки циркуля на расстояние, равное радиусу. Проведите дугу с центром в точке 1. Отметьте точки ее пересечения с окружностью. Они и обозначают направления осей Х и Y. В левую сторону от оси Z отходит ось Х, вправо - Y.

Постройте изометрическую проекцию . Коэффициенты искажения в по всем осям принимаются за 1. Чтобы построить квадрат со стороной а, отложите это расстояние от точки О по осям Х и Y и сделайте засечки. Проведите через полученные точки прямые, параллельные обеим указанным осям. Квадрат в этой проекции выглядит как параллелограмм с углами в 120º и 60º.

Чтобы построить треугольник, необходимо продолжить ось Х так, чтобы часть луча расположилась между осями Z м Y. Разделите сторону треугольника пополам и отложите полученный размер от точки О по оси Х в обе стороны. По оси Y отложите высоту треугольника. Соедините концы отрезка, расположенного на оси X, с полученной точкой на оси Y.

Похожим способом строится в изометрической проекции и трапеция. На оси Х в одну и в другую сторону от точки О отложите половину основания этой геометрической фигуры, а по оси Y - высоту. Через засечки на оси Y проведите прямую, параллельную оси Х, и отложите на ней в обе стороны половину второго основания. Соедините полученные точки с засечками на оси Х.

Окружность в изометрии выглядит как эллипс. Ее можно построить как с учетом коэффициента искажений, так и без. В первом случае большой диаметр будет равен диаметру самой окружности, а малый составит 0,58 от него. При построении без учета этого коэффициента оси эллипса будут равняться соответственно 1,22 и 0,71 диаметра исходной окружности.

gastroguru © 2017