Равновесие тел. «Формирование условий равновесия твёрдого тела» в курсе физики основной школы Формула условия равновесия тел

Статика — это раздел механики, изучающий равновесие тел. Статика позволяет определить условия равновесия тел и отвечает на некоторые вопросы, которые касаются движения тел, например, дает ответ, в каком направлении возникает движение, если равновесие нарушено. Стоит оглянуться вокруг и можно заметить, что большинство тел находятся в равновесии – они либо движутся с постоянной скоростью, либо покоятся. Этот вывод можно сделать из законов Ньютона.

Примером может служить сам человек, картина, висящая на стене, подъёмные краны, различные постройки: мосты, арки, башни, здания. Тела вокруг нас подвергаются воздействию каких-либо сил. На тела действует разное количество сил, но если будем находить результирующую силу, для тела, находящегося в равновесии, она будет равна нулю.
Различают:

  • статическое равновесие – тело покоится;
  • динамическое равновесие – тело движется с постоянной скоростью.

Статическое равновесие. Если на тело действуют силы F1, F2, F3, и так далее, то основным требованием существования состояния равновесия является (равновесие). Это векторное уравнение в трехмерном пространстве, и представляет три отдельных уравнения, по одному для каждого направлению пространства. .

Приложенные к телу проекции всех сил на любое направление, должны компенсироваться, то есть алгебраическая сумма проекций всех сил на любое направление должна быть равна 0.

При нахождении равнодействующей силы можно перенести все силы и расположить точку их приложения в центр масс. Центр масс – точка, которая вводится для характеристики движения тела или системы частиц, как целого, характеризует распределение масс в теле.

На практике мы очень часто встречаем случаи и поступательного, и вращательного движения одновременно: скатывание бочки по наклонной плоскости, танцующая пара. При таком движении одного условия равновесия недостаточно.

Необходимое условие равновесия в этом случае будет:

На практике и в жизни большую роль играет устойчивость тел, характеризующая равновесие.

Различают виды равновесия:

  • Устойчивое равновесие;
  • Неустойчивое равновесие;
  • Безразличное равновесие.

Устойчивое равновесие – это равновесие, когда при малом отклонении от положения равновесия возникает сила, возвращающая его в состояние равновесия (маятник остановившихся часов, теннисный шарик, закатившийся в ямку, Ванька-встанька или неваляшка, белье на веревке находятся в состоянии устойчивого равновесия).

Неустойчивое равновесие – это состояние, когда тело после выведения из положения равновесия отклоняется из-за возникающей силы еще больше от положения равновесия (теннисный шарик на выпуклой поверхности).

Безразличное равновесие – будучи предоставленным, самому себе тело не меняет своего положения после выведения из состояния равновесия (теннисный шарик, лежащий на столе, картина на стене, ножницы, линейка, подвешенные на гвоздик находятся в состоянии безразличного равновесия). Ось вращения и центр тяжести совпадают.

Для двух тел, то тело будет более устойчиво, которое обладает большей площадью опоры.

Если тело неподвижно, то это тело находится в равновесии. Многие тела покоятся, несмотря на то, что на них действуют силы со стороны других тел. Это различные строения, камни, машины, части механизмов, мосты и многие другие тела. Задача изучения условий равновесия тел имеет большое практическое значение для машиностроения, строительного дела, приборостроения и других областей техники.
Все реальные тела под воздействием приложенных к ним сил со стороны других тел изменяют свою форму и размеры, то есть деформируются. Величина деформации зависит от многих факторов: материала тела, его формы, приложенных к нему сил. Деформации могут быть настолько малыми, что обнаружить их можно только при помощи специальных приборов.
Деформации могут быть большими, и тогда их легко заметить, например, растяжение пружины или резинового шнура, изгиб деревянной доски или тонкой металлической линейки.
Иногда действия сил вызывают значительные деформации тела, в этом случае, фактически после приложения сил, мы будем иметь дело с телом, которое имеет совершенно новые геометрические размеры и форму. Также необходимо будет определить условия равновесия этого нового деформированного тела. Подобные задачи, связанные с расчетом деформаций тел, как правило, очень сложны.
Довольно часто в реальных жизненных ситуациях деформации очень невелики, а тело при этом остается в равновесии. В таких случаях деформациями можно пренебречь и рассматривать ситуацию так, как если бы тела были недеформируемыми, т. е. абсолютно твердыми. Абсолютно твердое тело в механике - это такая модель реального тела, у которой расстояние между частицами не изменяется, каким бы воздействиям данное тело не подвергалось. Следует понимать, что абсолютно твердых тел в природе не существует, но в некоторых случаях мы можем считать реальное тело абсолютно твердым.
Например, железобетонную плиту перекрытия дома можно считать абсолютно твердым телом в том случае, когда на ней стоит очень тяжелый шкаф. Сила тяжести шкафа действует на плиту, и плита прогибается, но эта деформация будет столь мала, что обнаружить ее можно только с помощью точных приборов. Поэтому в данной ситуации мы можем пренебречь деформацией и считать плиту абсолютно твердым телом.
Выяснив условия равновесия абсолютно твердого тела, мы узнаем условия равновесия реальных тел в тех ситуациях, когда их деформациями можно пренебречь.
Статика - раздел механики, в котором изучаются условия равновесия абсолютно твердых тел.
В статике учитываются размеры и форма тел, а все рассматриваемые тела считаются абсолютно твердыми. Статику можно рассматривать как частный случай динамики, так как неподвижность тел, когда на них действуют силы, есть частный случай движения с нулевой скоростью.
Деформации, происходящие в теле, изучаются в прикладных разделах механики (теория упругости, сопротивление материалов). В дальнейшем для краткости абсолютно твердое тело будем называть твердым телом, или просто телом.
Выясним условия равновесия любого тела. Для этого используем законы Ньютона. Чтобы упростить себе задачу, разобьем мысленно все тело на большое число небольших частей, каждый из которых можно рассматривать как материальную точку. Все тело состоит из множества элементов, некоторые из них изображены на рисунке. Силы, которые действуют на данное тело со стороны других тел - это внешние силы. Внутренние силы - это силы, с которыми элементы действуют друг на друга. Сила F1,2 - это сила, действующая на элемент 1 со стороны элемента 2. Сила F2,1 приложена к элементу 2 элементом 1. Это внутренние силы; к ним относятся также силы F1,3 и F3,1, F2,3 и F3,2.
Силы F1, F2, F3 - это геометрическая сумма всех внешних сил, действующих на элементы 1, 2, 3. Силы F1 штрих, F2 штрих, F3 штрих - это геометрическая сумма внутренних сил, приложенных к элементам 1, 2, 3.
Ускорение каждого элемента тела равно нулю, потому что тело покоится. Значит, по второму закону Ньютона равна нулю и геометрическая сумма всех внутренних и внешних сил, действующих на элемент.
Для равновесия тела необходимо и достаточно, чтобы геометрическая сумма всех внешних и внутренних сил, действующих на каждый элемент этого тела, была равна нулю.
Каким условиям должны удовлетворять внешние силы, действующие на твердое тело, чтобы оно находилось в покое? Для этого сложим уравнения. Равенство получается ноль.
В первых скобках этого равенства записана векторная сумма всех внешних сил, действующих на тело, а во вторых скобках - векторная сумма всех внутренних сил, приложенных к элементам этого тела. Мы уже выяснили, используя третий закон Ньютона, что векторная сумма всех внутренних сил системы равна нулю, потому что любой внутренней силе соответствует сила равная ей по модулю и противоположная по направлению.
Следовательно, в полученном равенстве остается исключительно геометрическая сумма внешних сил, которые оказывают действие на тело.
Это равенство является обязательным условием для равновесия материальной точки. Если мы применяем его к твердому телу, то это равенство называют первым условием его равновесия.
В том случае, если твердое тело находится в равновесии, то геометрическая сумма внешних сил, приложенных к нему, равна нулю.
Учитывая тот факт, что к одним элементам тела может быть приложено сразу несколько внешних сил, а на другие элементы внешние силы могут вообще не действовать, то число всех внешних сил совершенно необязательно должно быть равно числу всех элементов.
Если сумма внешних сил равна нулю, то равна нулю и сумма проекций этих сил на оси координат. В частности для проекций внешних сил на ось ОХ можно записать, что сумма проекций на ось ОХ внешних сил равна нулю. Аналогичным способом может быть записано уравнение для проекций сил на оси ОY и OZ.
На основе условия равновесия любого элемента тела выведено первое условие равновесия твердого тела.

Класс: 10

Презентация к уроку
































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: Изучить состояние равновесия тел, познакомиться с различными видами равновесия; выяснить условия, при которых тело находится в равновесии.

Задачи урока:

  • Учебные: Изучить два условия равновесия, виды равновесия (устойчивое, неустойчивое, безразличное). Выяснить, при каких условиях тела более устойчивы.
  • Развивающие: Способствовать развитию познавательного интереса к физике. Развитие навыков сравнивать, обобщать, выделять главное, делать выводы.
  • Воспитательные: Воспитывать внимание, умения высказывать свою точку зрения и отстаивать её, развивать коммуникативные способности учащихся.

Тип урока: урок изучения нового материала с компьютерной поддержкой.

Оборудование:

  1. Диск «Работа и мощность» из «Электронных уроков и тестов.
  2. Таблица «Условия равновесия».
  3. Призма наклоняющаяся с отвесом.
  4. Геометрические тела: цилиндр, куб, конус и т.д.
  5. Компьютер, мултимедиапроектор, интерактивная доска или экран.
  6. Презентация.

Ход урока

Сегодня на уроке мы узнаем, почему подъёмный кран не падает, почему игрушка «Ванька-встанька» всегда возвращается в исходное состояние, почему Пизанская башня не падает?

I. Повторение и актуализация знаний.

  1. Сформулировать первый закон Ньютона. О каком состоянии говорится в законе?
  2. На какой вопрос отвечает второй закон Ньютона? Формула и формулировка.
  3. На какой вопрос отвечает третий закон Ньютона? Формула и формулировка.
  4. Что называется равнодействующей силой? Как она находится?
  5. Из диска «Движение и взаимодействие тел» выполнить задание № 9 «Равнодействующая сил с разными направлениями» (правило сложения векторов (2, 3 упражнения)).

II. Изучение нового материала.

1. Что называется равновесием?

Равновесие – это состояние покоя.

2. Условия равновесия. (слайд 2)

а) Когда тело находится в покое? Из какого закона это следует?

Первое условие равновесия: Тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к телу, равна нулю. ∑F = 0

б) Пусть на доску действуют две равные силы, как показано на рисунке.

Будет ли она находиться в равновесии? (Нет, она будет поворачиваться)

В покое находится только центральная точка, а остальные движутся. Значит, чтобы тело находилось в равновесии, необходимо, чтобы сумма всех сил, действующих на каждый элемент равнялась 0.

Второе условие равновесия: Сумма моментов сил, действующих по часовой стрелке, должна равняться сумме моментов сил, действующих против часовой стрелки.

∑ M по часовой = ∑ M против часовой

Момент силы: M = F L

L – плечо силы – кратчайшее расстояние от точки опоры до линии действия силы.

3. Центр тяжести тела и его нахождение. (слайд 4)

Центр тяжести тела – это точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела (при любом положении тела в пространстве).

Найти центр тяжести следующих фигур:

4. Виды равновесия.

а) (слайды 5–8)



Вывод: Равновесие устойчиво, если при малом отклонении от положения равновесия есть сила, стремящаяся вернуть его в это положение.

Устойчиво то положение, в котором его потенциальная энергия минимальна. (слайд 9)

б) Устойчивость тел, находящихся на точке опоры или на линии опоры. (слайды 10–17)

Вывод: Для устойчивости тела, находящегося на одной точке или линии опоры необходимо, чтобы центр тяжести находился ниже точки (линии) опоры.

в) Устойчивость тел, находящихся на плоской поверхности.

(слайд 18)

1) Поверхность опоры – это не всегда поверхность, которая соприкасается с телом (а та, которая ограниченна линиями, соединяющими ножки стола, треноги)

2) Разбор слайда из «Электронных уроков и тестов», диск «Работа и мощность», урок «Виды равновесия».

Рисунок 1.

  1. Чем различаются табуретки? (Площадью опоры)
  2. Какая из них более устойчивая? (С большей площадью)
  3. Чем различаются табуретки? (Расположением центра тяжести)
  4. Какая из них наиболее устойчива? (Укоторой центр тяжести ниже)
  5. Почему? (Т.к. её можно отклонить на больший угол без опрокидывания)

3) Опыт с призмой отклоняющейся

  1. Поставим на доску призму с отвесом и начнём её постепенно поднимать за один край. Что мы видим?
  2. Пока линия отвеса пересекает поверхность, ограниченную опорой, равновесие сохраняется. Но как только вертикаль, проходящая через центр тяжести, начнёт выходить за границы поверхности опоры, этажерка опрокидывается.

Разбор слайдов 19–22 .

Выводы:

  1. Устойчиво то тело, у которого площадь опоры больше.
  2. Из двух тел одинаковой площади устойчиво то тело, у которого центр тяжести расположен ниже, т.к. его можно отклонить без опрокидывания на большой угол.

Разбор слайдов 23–25.

Какие корабли наиболее устойчивы? Почему? (У которых груз расположен в трюмах, а не на палубе)

Какие автомобили наиболее устойчивы? Почему? (Чтобы увеличить устойчивость машин на поворотах, полотно дороги наклоняют в сторону поворота.)

Выводы: Равновесие может быть устойчивым, неустойчивым, безразличным. Устойчивость тел тем больше, чем больше площадь опоры и ниже центр тяжести.

III. Применение знаний об устойчивости тел.

  1. Каким специальностям наиболее необходимы знания о равновесии тел?
  2. Проектировщикам и конструкторам различных сооружений (высотных зданий, мостов, телевизионных башен и т.д.)
  3. Цирковым артистам.
  4. Водителям и другим специалистам.

(слайды 28–30)

  1. Почему «Ванька-встанька» возвращается в положение равновесия при любом наклоне игрушки?
  2. Почему Пизанская башня стоит под наклоном и не падает?
  3. Каким образом сохраняют равновесие велосипедисты и мотоциклисты?

Выводы из урока:

  1. Существует три вида равновесия: устойчивое, неустойчивое, безразличное.
  2. Устойчиво положение тела, в котором его потенциальная энергия минимальна.
  3. Устойчивость тел на плоской поверхности тем больше, чем больше площадь опоры и ниже центр тяжести.

Домашнее задание : § 54 56 (Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский)

Использованные источники и литература:

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н.Сотский. Физика. 10 класс.
  2. Диафильм «Устойчивость» 1976 г. (отсканирован мною на плёночном сканере).
  3. Диск «Движение и взаимодействие тел» из «Электронных уроков и тестов».
  4. Диск «Работа и мощность» из «Электронных уроков и тестов».

Система сил наз.уравновешенной ,если под действием этой системы тело остается в покое.

Условия равновесия:
Первое условие равновесия твердого тела:
Для равновесия твердого тела необходимо, чтобы сумма внешних сил, приложенных к телу, была равна нулю.
Второе условие равновесия твердого тела:
При равновесии твердого тела сумма моментов всех внешних сил, действующих на него относительно любой оси, равно нулю.
Общее условие равновесия твердого тела :
Для равновесия твердого тела должны равняться нулю сумма внешних сил и сумма моментов сил, действующих на тело. Должны быть также равны нулю начальная скорость центра масс и угловая скорость вращения тела.

Теорема. Три силы уравновешивают твёрдое тело только в том случае, когда все они лежат в одной плоскости.

11. Плоская система сил – это силы, расположенные в одной плоскости.

Три формы уравнений равновесия для плоской системы:

Центр тяжести тела.

Центром тяжести тела конечных размеров называется точка, относительно которой сумма моментов сил тяжести всех частиц тела равна нулю. В этой точке приложена сила тяжести тела. Центр тяжести тела (или системы сил) обычно совпадает с центром масс тела (или системы сил).

Центр тяжести плоской фигуры:

Практический способ нахождения центра масс плоской фигуры : подве­сим тело в поле тяжести так, чтобы оно могло свободно поворачиваться вокруг точки подвеса O1 . В равновесии центр масс С находит­ся на одной вертикали с точкой подвеса (ниже ее), так как равен нулю

момент силы тяжести, которую можно считать приложенной в центре масс. Изменяя точку подвеса, таким же способом находим еще одну прямую О 2 С , проходящую через центр масс. Положение центра масс да­ется точкой их пересечения.

Скорость центра масс:

Импульс системы частиц равен произведению массы всей системы М=Σmi на скорость ее центра масс V :

Центр масс характеризует движении системы как целого.

15. Трение скольжения – трение при относительном движении соприкасающихся тел.

Трение покоя – трение при отсутствии относительного перемещения соприкасающихся тел.

Сила трения скольжения Fтр между поверхностями соприкасающихся тел при их относительном движении зависит от силы нормальной реакции N , или от силы нормального давления Pn , причем Fтр=kN или Fтр=kPn , где k – коэффициент трения скольжения , зависящий от тех же факторов, что и коэффициент трения покоя k0 , а также от скорости относительного движения соприкасающихся тел.

16. Трение качения – это перекатывание одного тела по другому. Сила трения скольжения не зависит от величины трущихся поверхностей, а только от качества поверхностей трущихся тел и от силы, снижающей трущиеся поверхности и направленной перпендикулярно к ним. F=kN , где F – сила трения, N – величина нормальной реакции и k – коэффициент трения при скольжении.

17. Равновесие тел при наличии трения - это максимальная сила сцепления пропорциональная нормальному давлению тела на плоскость.

Угол между полной реакцией, построенной на наибольшей силе трения при данной нормальной реакции, и направлением нормальной реакции, называется углом трения.

Конус с вершиной в точке приложения нормальной реакции шероховатой поверхности, образующая которого составляет угол трения с этой нормальной реакцией, называется конусом трения.

Динамика.

1. Вдинамике рассматривается влияние взаимодействий между телами на их механическое движение.

Масса - это малярная характеристика материальной точки. Масса постоянна. Масса адьетивна (складывается)

Сила – это вектор, который полностью характеризует взаимодействие на ней материальной точки с другими материальными точками.

Материальная точка – тело, размеры и форма которого несущественны в рассматриваемом движении.(ex: в поступательном движении твердое тело можно считать материальной точкой)

Системой материальных точек наз. множество материальных точек, взаимодействующих между собой.

1 закон Ньютона: любая материальная точка сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока внешние воздействия не изменят этого состояния.

2 закон Ньютона: ускорение, приобретаемое материальной точкой в инерциальной системе отсчета, прямо пропорционально действующей на точку силе, обратно пропорционально массе точки и по направлению совпадает с силой: a=F/m

Тело находится в состоянии покоя (или движется равномерно и прямолинейно), если векторная сумма всех сил, действующих на него, равна нулю. Говорят, что силы уравновешивают друг друга. Когда мы имеем дело с телом определенной геометрической формы, при вычислении равнодействующей силы можно все силы прикладывать к центру масс тела.

Условие равновесия тел

Чтобы тело, которое не вращается, находилось в равновесии, необходимо, чтобы равнодействующая всех сил, действующий на него, была равна нулю.

F → = F 1 → + F 2 → + . . + F n → = 0 .

На рисунке выше изображено равновесие твердого тела. Брусок находится в состоянии равновесия под действием трех действующих не него сил. Линии действия сил F 1 → и F 2 → пересекаются в точке O . Точка приложения силы тяжести - центр масс тела C . Данные точки лежат на одной прямой, и при вычислении равнодействующей силы F 1 → , F 2 → и m g → приводятся к точке C .

Условия равенства нулю равнодействующей всех сил недостаточно, если тело может вращаться вокруг некоторой оси.

Плечом силы d называется длина перпендикуляра, проведенного от линии действия силы к точке ее приложения. Момент силы M - произведение плеча силы на ее модуль.

Момент силы стремится повернуть тело вокруг оси. Те моменты, которые поворачивают тело против часовой стрелки, считаются положительными. Единица измерения момента силы в международной системе CИ - 1 Н ь ю т о н м е т р.

Определение. Правило моментов

Если алгебраическая сумма всех моментов, приложенных к телу относительно неподвижной оси вращения, равна нулю, то тело находится в состоянии равновесия.

M 1 + M 2 + . . + M n = 0

Важно!

В общем случае для равновесия тел необходимо выполнение двух условий: равенство нулю равнодействующей силы и соблюдение правила моментов.

В механике есть разные виды равновесия. Так, различают устойчивое и неустойчивое, а также безразличное равновесие.

Типичный пример безразличного равновесия - катящееся колесо (или шар), которое, если остановить его в любой точке, окажется в состоянии равновесия.

Устойчивое равновесие - такое равновесие тела, когда при его малых отклонениях возникают силы или моменты сил, которые стремятся вернуть тело в равновесное состояние.

Неустойчивое равновесие - состояние равновесия, при малом отклонении от которого силы и моменты сил стремятся вывести тело из равновесия еще больше.

На рисунке выше положение шара (1) - безразличное равновесие, (2) - неустойчивое равновесие, (3) - устойчивое равновесие.

Тело с неподвижной осью вращения может находится в любом из описанных положений равновесия. Если ось вращения проходит через центр масс, возникает безразличное равновесие. При устойчивом и неустойчивом равновесии центр масс располагается на вертикальной прямой, которая проходит через ось вращения. Когда центр масс находится ниже оси вращения, равновесие является устойчивым. Иначе - наоборот.

Особый случай равновесия - равновесие тела на опоре. При этом упругая сила распределяется по всему основанию тела, а не проходит через одну точку. Тело покоится в равновесии, когда вертикальная линия, проведенная через центр масс, пересекает площадь опоры. Иначе, если линия из центра масс не попадает в контур, образованный линиями, соединяющими точки опоры, тело опрокидывается.

Пример равновесия тела на опоре - знаменитая Пизанская башня. По легенде с нее сбрасывал шары Галилео Галилей, когда проводил свои опыты по изучению свободного падения тел.

Линия, проведенная из центра масс башни пересекает основание приблизительно в 2,3 м от его центра.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

gastroguru © 2017