Расстояние от точки до прямой - определение. Определение расстояния от точки до прямой Определить истинное расстояние от точки до прямой

Введение

В этой курсовой я рассмотрел тему «расстояние от точки до прямой»: дано определение расстояния от точки до прямой, приведены графические иллюстрации. Разобрано нахождение расстояния от точки до прямой на плоскости и в пространстве методом координат. После каждого блока теории показаны подробные решения примеров и задач на нахождение расстояния от точки до прямой.

Расстояние от точки до прямой - определение

Пусть на плоскости или в трехмерном пространстве задана прямая a и точка M 1 , не лежащая на прямой a. Проведем через точку M 1 прямую b, перпендикулярную прямой a. Обозначим точку пересечения прямых a и b как H 1 . Отрезок M 1 H 1 называется перпендикуляром, проведенным из точки M 1 к прямой a.

Определение.

Расстоянием от точки M 1 до прямой a называют расстояние между точками M 1 и H 1 .

Однако чаще встречается определение расстояния от точки до прямой, в котором фигурирует длина перпендикуляра.

Определение.

Расстояние от точки до прямой - это длина перпендикуляра, проведенного из данной точки к данной прямой.

Это определение эквивалентно первому определению расстояния от точки до прямой.

Рисунок 1

Обратите внимание на то, что расстояние от точки до прямой - это наименьшее из расстояний от этой точки до точек заданной прямой. Покажем это.

Возьмем на прямой a точку Q, не совпадающую с точкой M 1 . Отрезок M 1 Q называют наклонной, проведенной из точки M 1 к прямой a. Нам нужно показать, что перпендикуляр, проведенный из точки M 1 к прямой a, меньше любой наклонной, проведенной из точки M 1 к прямой a. Это действительно так: треугольник M 1 QH 1 прямоугольный с гипотенузой M 1 Q, а длина гипотенузы всегда больше длины любого из катетов, следовательно, .

Данная статья рассказывает о теме « расстояния от точки до прямой», рассматриваются определения расстояния от точки к прямой с иллюстрированными примерами методом координат. Каждый блок теории в конце имеет показанные примеры решения подобных задач.

Расстояние от точки до прямой находится через определение расстояния от точки до точки. Рассмотрим подробней.

Пусть имеется прямая a и точка М 1 , не принадлежащая заданной прямой. Через нее проведем прямую b , расположенную перпендикулярно относительно прямой a . Точка пересечения прямых возьмем за Н 1 . Получим, что М 1 Н 1 является перпендикуляром, который опустили из точки М 1 к прямой a .

Определение 1

Расстоянием от точки М 1 к прямой a называется расстояние между точками М 1 и Н 1 .

Бывают записи определения с фигурированием длины перпендикуляра.

Определение 2

Расстоянием от точки до прямой называют длину перпендикуляра, проведенного из данной точки к данной прямой.

Определения эквивалентны. Рассмотрим рисунок, приведенный ниже.

Известно, что расстояние от точки до прямой является наименьшим из всех возможных. Рассмотрим это на примере.

Если взять точку Q , лежащую на прямой a , не совпадающую с точкой М 1 , тогда получим, что отрезок М 1 Q называется наклонной, опущенной из М 1 к прямой a . Необходимо обозначить, что перпендикуляр из точки М 1 является меньше, чем любая другая наклонная, проведенная из точки к прямой.

Чтобы доказать это, рассмотрим треугольник М 1 Q 1 Н 1 , где М 1 Q 1 является гипотенузой. Известно, что ее длина всегда больше длины любого из катетов. Значим, имеем, что M 1 H 1 < M 1 Q . Рассмотрим рисунок, приведенный ниже.

Исходные данные для нахождения от точки до прямой позволяют использовать несколько методов решения: через теорему Пифагора, определения синуса, косинуса, тангенса угла и другими. Большинство заданий такого типа решают в школе на уроках геометрии.

Когда при нахождении расстояния от точки до прямой можно ввести прямоугольную систему координат, то применяют метод координат. В данном пункте рассмотрим основных два метода нахождения искомого расстояния от заданной точки.

Первый способ подразумевает поиск расстояния как перпендикуляра, проведенного из М 1 к прямой a . Во втором способе используется нормальное уравнение прямой а для нахождения искомого расстояния.

Если на плоскости имеется точка с координатами M 1 (x 1 , y 1) , расположенная в прямоугольной системе координат, прямая a , а необходимо найти расстояние M 1 H 1 , можно произвести вычисление двумя способами. Рассмотрим их.

Первый способ

Если имеются координаты точки H 1 , равные x 2 , y 2 , тогда расстояние от точки до прямой вычисляется по координатам из формулы M 1 H 1 = (x 2 - x 1) 2 + (y 2 - y 1) 2 .

Теперь перейдем к нахождению координат точки Н 1 .

Известно, что прямая линия в О х у соответствует уравнению прямой на плоскости. Возьмем способ задания прямой a через написание общего уравнения прямой или уравнения с угловым коэффициентом. Составляем уравнение прямой, которая проходит через точку М 1 перпендикулярно заданной прямой a . Прямую обозначим буковой b . Н 1 является точкой пересечения прямых a и b , значит для определения координат необходимо воспользоваться статьей, в которой идет речь о координатах точек пересечения двух прямых.

Видно, что алгоритм нахождения расстояния от заданной точки M 1 (x 1 , y 1) до прямой a проводится согласно пунктам:

Определение 3

  • нахождение общего уравнения прямой a , имеющее вид A 1 x + B 1 y + C 1 = 0 ,или уравнение с угловым коэффициентом, имеющее вид y = k 1 x + b 1 ;
  • получение общего уравнения прямой b , имеющее вид A 2 x + B 2 y + C 2 = 0 или уравнение с угловым коэффициентом y = k 2 x + b 2 , если прямая b пересекает точку М 1 и является перпендикулярной к заданной прямой a ;
  • определение координат x 2 , y 2 точки Н 1 , являющейся точкой пересечения a и b , для этого производится решение системы линейных уравнений A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 y + C 2 = 0 или y = k 1 x + b 1 y = k 2 x + b 2 ;
  • вычисление искомого расстояния от точки до прямой, используя формулу M 1 H 1 = (x 2 - x 1) 2 + (y 2 - y 1) 2 .

Второй способ

Теорема способна помочь ответить на вопрос о нахождении расстояния от заданной точки дот заданной прямой на плоскости.

Теорема

Прямоугольная система координат имеет О х у имеет точку M 1 (x 1 , y 1) , из которой проведена прямая а к плоскости, задаваемая нормальным уравнением плоскости, имеющее вид cos α · x + cos β · y - p = 0 , равно по модулю значению, получаемому в левой части нормального уравнения прямой, вычисляемому при x = x 1 , y = y 1 , значит, что M 1 H 1 = cos α · x 1 + cos β · y 1 - p .

Доказательство

Прямой а соответствует нормальное уравнение плоскости, имеющее вид cos α · x + cos β · y - p = 0 , тогда n → = (cos α , cos β) считается нормальным вектором прямой a при расстоянии от начала координат до прямой a с p единицами. Необходимо изобразить все данные на рисунке, добавить точку с координатами M 1 (x 1 , y 1) , где радиус-вектор точки М 1 - O M 1 → = (x 1 , y 1) . Необходимо провести прямую от точки до прямой, которое обозначим M 1 H 1 . Необходимо показать проекции М 2 и Н 2 точек М 1 и Н 2 на прямую, проходящую через точку O с направляющим вектором вида n → = (cos α , cos β) , а числовую проекцию вектора обозначим как O M 1 → = (x 1 , y 1) к направлению n → = (cos α , cos β) как n p n → O M 1 → .

Вариации зависят от расположения самой точки М 1 . Рассмотрим на рисунке, приведенном ниже.

Результаты фиксируем при помощи формулы M 1 H 1 = n p n → O M → 1 - p . После чего приводим равенство к такому виду M 1 H 1 = cos α · x 1 + cos β · y 1 - p для того, чтобы получить n p n → O M → 1 = cos α · x 1 + cos β · y 1 .

Скалярное произведение векторов в результате дает преобразованную формулу вида n → , O M → 1 = n → · n p n → O M 1 → = 1 · n p n → O M 1 → = n p n → O M 1 → , которая является произведением в координатной форме вида n → , O M 1 → = cos α · x 1 + cos β · y 1 . Значит, получаем, что n p n → O M 1 → = cos α · x 1 + cos β · y 1 . Отсюда следует, что M 1 H 1 = n p n → O M 1 → - p = cos α · x 1 + cos β · y 1 - p . Теорема доказана.

Получаем, что для нахождения расстояния от точки M 1 (x 1 , y 1) к прямой a на плоскости необходимо выполнить несколько действий:

Определение 4

  • получение нормального уравнения прямой a cos α · x + cos β · y - p = 0 , при условии, что его нет в задании;
  • вычисление выражения cos α · x 1 + cos β · y 1 - p , где полученное значение принимает M 1 H 1 .

Применим данные методы на решении задач с нахождением расстояния от точки до плоскости.

Пример 1

Найти расстояние от точки с координатами M 1 (- 1 , 2) к прямой 4 x - 3 y + 35 = 0 .

Решение

Применим первый способ для решения.

Для этого необходимо найти общее уравнение прямой b , которая проходит через заданную точку M 1 (- 1 , 2) , перпендикулярно прямой 4 x - 3 y + 35 = 0 . Из условия видно, что прямая b является перпендикулярной прямой a , тогда ее направляющий вектор имеет координаты, равные (4 , - 3) . Таким образом имеем возможность записать каноническое уравнение прямой b на плоскости, так как имеются координаты точки М 1 , принадлежит прямой b . Определим координаты направляющего вектора прямой b . Получим, что x - (- 1) 4 = y - 2 - 3 ⇔ x + 1 4 = y - 2 - 3 . Полученное каноническое уравнение необходимо преобразовать к общему. Тогда получаем, что

x + 1 4 = y - 2 - 3 ⇔ - 3 · (x + 1) = 4 · (y - 2) ⇔ 3 x + 4 y - 5 = 0

Произведем нахождение координат точек пересечения прямых, которое примем за обозначение Н 1 . Преобразования выглядят таким образом:

4 x - 3 y + 35 = 0 3 x + 4 y - 5 = 0 ⇔ x = 3 4 y - 35 4 3 x + 4 y - 5 = 0 ⇔ x = 3 4 y - 35 4 3 · 3 4 y - 35 4 + 4 y - 5 = 0 ⇔ ⇔ x = 3 4 y - 35 4 y = 5 ⇔ x = 3 4 · 5 - 35 4 y = 5 ⇔ x = - 5 y = 5

Из выше написанного имеем, что координаты точки Н 1 равны (- 5 ; 5) .

Необходимо вычислить расстояние от точки М 1 к прямой a . Имеем, что координаты точек M 1 (- 1 , 2) и H 1 (- 5 , 5) , тогда подставляем в формулу для нахождения расстояния и получаем, что

M 1 H 1 = (- 5 - (- 1) 2 + (5 - 2) 2 = 25 = 5

Второй способ решения.

Для того, чтобы решить другим способом, необходимо получить нормальное уравнение прямой. Вычисляем значение нормирующего множителя и умножаем обе части уравнения 4 x - 3 y + 35 = 0 . Отсюда получим, что нормирующий множитель равен - 1 4 2 + (- 3) 2 = - 1 5 , а нормальное уравнение будет вида - 1 5 · 4 x - 3 y + 35 = - 1 5 · 0 ⇔ - 4 5 x + 3 5 y - 7 = 0 .

По алгоритму вычисления необходимо получить нормальное уравнение прямой и вычислить его со значениями x = - 1 , y = 2 . Тогда получаем, что

4 5 · - 1 + 3 5 · 2 - 7 = - 5

Отсюда получаем, что расстояние от точки M 1 (- 1 , 2) к заданной прямой 4 x - 3 y + 35 = 0 имеет значение - 5 = 5 .

Ответ: 5 .

Видно, что в данном методе важно использование нормального уравнения прямой, так как такой способ является наиболее коротким. Но первый метод удобен тем, что последователен и логичен, хотя имеет больше пунктов вычисления.

Пример 2

На плоскости имеется прямоугольная система координат О х у с точкой M 1 (8 , 0) и прямой y = 1 2 x + 1 . Найти расстояние от заданной точки до прямой.

Решение

Решение первым способом подразумевает приведение заданного уравнения с угловым коэффициентом к уравнению общего вида. Для упрощения можно сделать иначе.

Если произведение угловых коэффициентов перпендикулярных прямых имеют значение - 1 , значит угловой коэффициент прямой перпендикулярной заданной y = 1 2 x + 1 имеет значение 2 . Теперь получим уравнение прямой, проходящее через точку с координатами M 1 (8 , 0) . Имеем, что y - 0 = - 2 · (x - 8) ⇔ y = - 2 x + 16 .

Переходим к нахождению координат точки Н 1 , то есть точкам пересечения y = - 2 x + 16 и y = 1 2 x + 1 . Составляем систему уравнений и получаем:

y = 1 2 x + 1 y = - 2 x + 16 ⇔ y = 1 2 x + 1 1 2 x + 1 = - 2 x + 16 ⇔ y = 1 2 x + 1 x = 6 ⇔ ⇔ y = 1 2 · 6 + 1 x = 6 = y = 4 x = 6 ⇒ H 1 (6 , 4)

Отсюда следует, что расстояние от точки с координатами M 1 (8 , 0) к прямой y = 1 2 x + 1 равно расстоянию от точки начала и точки конца с координатами M 1 (8 , 0) и H 1 (6 , 4) . Вычислим и получим, что M 1 H 1 = 6 - 8 2 + (4 - 0) 2 20 = 2 5 .

Решение вторым способом заключается в переходе от уравнения с коэффициентом к нормальному его виду. То есть получим y = 1 2 x + 1 ⇔ 1 2 x - y + 1 = 0 , тогда значение нормирующего множителя будет - 1 1 2 2 + (- 1) 2 = - 2 5 . Отсюда следует, что нормальное уравнение прямой принимает вид - 2 5 · 1 2 x - y + 1 = - 2 5 · 0 ⇔ - 1 5 x + 2 5 y - 2 5 = 0 . Произведем вычисление от точки M 1 8 , 0 к прямой вида - 1 5 x + 2 5 y - 2 5 = 0 . Получаем:

M 1 H 1 = - 1 5 · 8 + 2 5 · 0 - 2 5 = - 10 5 = 2 5

Ответ: 2 5 .

Пример 3

Необходимо вычислить расстояние от точки с координатами M 1 (- 2 , 4) к прямым 2 x - 3 = 0 и y + 1 = 0 .

Решение

Получаем уравнение нормального вида прямой 2 x - 3 = 0:

2 x - 3 = 0 ⇔ 1 2 · 2 x - 3 = 1 2 · 0 ⇔ x - 3 2 = 0

После чего переходим к вычислению расстояния от точки M 1 - 2 , 4 к прямой x - 3 2 = 0 . Получаем:

M 1 H 1 = - 2 - 3 2 = 3 1 2

Уравнение прямой y + 1 = 0 имеет нормирующий множитель со значением равным -1. Это означает, что уравнение примет вид - y - 1 = 0 . Переходим к вычислению расстояния от точки M 1 (- 2 , 4) к прямой - y - 1 = 0 . Получим, что оно равняется - 4 - 1 = 5 .

Ответ: 3 1 2 и 5 .

Подробно рассмотрим нахождение расстояния от заданной точки плоскости к координатным осям О х и О у.

В прямоугольной системе координат у оси О у имеется уравнение прямой, которое является неполным имеет вида х = 0 , а О х - y = 0 . Уравнения являются нормальными для осей координат, тогда необходимо найти расстояние от точки с координатами M 1 x 1 , y 1 до прямых. Это производится, исходя из формул M 1 H 1 = x 1 и M 1 H 1 = y 1 . Рассмотрим на рисунке, приведенном ниже.

Пример 4

Найти расстояние от точки M 1 (6 , - 7) до координатных прямых, расположенных в плоскости О х у.

Решение

Так как уравнение у = 0 относится к прямой О х, можно найти расстояние от M 1 с заданными координатами, до этой прямой, используя формулу. Получаем, что 6 = 6 .

Так как уравнение х = 0 относится к прямой О у, то можно найти расстояние от М 1 к этой прямой по формуле. Тогда получим, что - 7 = 7 .

Ответ: расстояние от М 1 к О х имеет значение 6 , а от М 1 к О у имеет значение 7 .

Когда в трехмерном пространстве имеем точку с координатами M 1 (x 1 , y 1 , z 1) , необходимо найти расстояние от точки A до прямой a .

Рассмотрим два способа, которые позволяют производить вычисление расстояние от точки до прямой a , расположенной в пространстве. Первый случай рассматривает расстояние от точки М 1 к прямой, где точка на прямой называется Н 1 и является основанием перпендикуляра, проведенного из точки М 1 на прямую a . Второй случай говорит о том, что точки этой плоскости необходимо искать в качестве высоты параллелограмма.

Первый способ

Из определения имеем, что расстояние от точки М 1 , расположенной на прямой а, является длиной перпендикуляра М 1 Н 1 , тогда получим, что при найденных координатах точки Н 1 , тогда найдем расстояние между M 1 (x 1 , y 1 , z 1) и H 1 (x 1 , y 1 , z 1) , исходя из формулы M 1 H 1 = x 2 - x 1 2 + y 2 - y 1 2 + z 2 - z 1 2 .

Получаем, что все решение идет к тому, чтобы найти координаты основания перпендикуляра, проведенного из М 1 на прямую a . Это производится следующим образом: Н 1 является точкой, где пересекаются прямая a с плоскостью, которая проходит через заданную точку.

Значит, алгоритм определения расстояния от точки M 1 (x 1 , y 1 , z 1) к прямой a пространства подразумевает несколько пунктов:

Определение 5

  • составление уравнение плоскости χ в качестве уравнения плоскости, проходящего через заданную точку, находящуюся перпендикулярно прямой;
  • определение координат (x 2 , y 2 , z 2) , принадлежавших точке Н 1 , которая является точкой пересечения прямой a и плоскости χ ;
  • вычисление расстояния от точки до прямой при помощи формулы M 1 H 1 = x 2 - x 1 2 + y 2 - y 1 2 + z 2 - z 1 2 .

Второй способ

Из условия имеем прямую a , тогда можем определить направляющий вектор a → = a x , a y , a z с координатами x 3 , y 3 , z 3 и определенной точки М 3 , принадлежащей прямой a . При наличии координат точек M 1 (x 1 , y 1) и M 3 x 3 , y 3 , z 3 можно произвести вычисление M 3 M 1 → :

M 3 M 1 → = (x 1 - x 3 , y 1 - y 3 , z 1 - z 3)

Следует отложить векторы a → = a x , a y , a z и M 3 M 1 → = x 1 - x 3 , y 1 - y 3 , z 1 - z 3 из точки М 3 , соединим и получим фигуру параллелограмма. М 1 Н 1 является высотой параллелограмма.

Рассмотрим на рисунке, приведенном ниже.

Имеем, что высота М 1 Н 1 является искомым расстоянием, тогда необходимо найти его по формуле. То есть ищем M 1 H 1 .

Обозначим площадь параллелограмма за букву S , находится по формуле, используя вектор a → = (a x , a y , a z) и M 3 M 1 → = x 1 - x 3 . y 1 - y 3 , z 1 - z 3 . Формула площади имеет вид S = a → × M 3 M 1 → . Также площадь фигуры равняется произведению длин его сторон на высоту, получим, что S = a → · M 1 H 1 с a → = a x 2 + a y 2 + a z 2 , являющимся длиной вектора a → = (a x , a y , a z) , являющейся равной стороне параллелограмма. Значит, M 1 H 1 является расстоянием от точки до прямой. Ее нахождение производится по формуле M 1 H 1 = a → × M 3 M 1 → a → .

Для нахождения расстояния от точки с координатами M 1 (x 1 , y 1 , z 1) до прямой a в пространстве, необходимо выполнить несколько пунктов алгоритма:

Определение 6

  • определение направляющего вектора прямой a - a → = (a x , a y , a z) ;
  • вычисление длины направляющего вектора a → = a x 2 + a y 2 + a z 2 ;
  • получение координат x 3 , y 3 , z 3 , принадлежавших точке М 3 , находящейся на прямой а;
  • вычисление координат вектора M 3 M 1 → ;
  • нахождение векторного произведения векторов a → (a x , a y , a z) и M 3 M 1 → = x 1 - x 3 , y 1 - y 3 , z 1 - z 3 в качестве a → × M 3 M 1 → = i → j → k → a x a y a z x 1 - x 3 y 1 - y 3 z 1 - z 3 для получения длины по формуле a → × M 3 M 1 → ;
  • вычисление расстояния от точки до прямой M 1 H 1 = a → × M 3 M 1 → a → .

Решение задач на нахождение расстояния от заданной точки до заданной прямой в пространстве

Пример 5

Найти расстояние от точки с координатами M 1 2 , - 4 , - 1 к прямой x + 1 2 = y - 1 = z + 5 5 .

Решение

Первый способ начинается с записи уравнения плоскости χ , проходящей через М 1 и перпендикулярно заданной точке. Получаем выражение вида:

2 · (x - 2) - 1 · (y - (- 4)) + 5 · (z - (- 1)) = 0 ⇔ 2 x - y + 5 z - 3 = 0

Нужно найти координаты точки H 1 , являющейся точкой пересечения с плоскостью χ к заданной по условию прямой. Следует переходить от канонического вида к пересекающемуся. Тогда получаем систему уравнений вида:

x + 1 2 = y - 1 = z + 5 5 ⇔ - 1 · (x + 1) = 2 · y 5 · (x + 1) = 2 · (z + 5) 5 · y = - 1 · (z + 5) ⇔ x + 2 y + 1 = 0 5 x - 2 z - 5 = 0 5 y + z + 5 = 0 ⇔ x + 2 y + 1 = 0 5 x - 2 z - 5 = 0

Необходимо вычислить систему x + 2 y + 1 = 0 5 x - 2 z - 5 = 0 2 x - y + 5 z - 3 = 0 ⇔ x + 2 y = - 1 5 x - 2 z = 5 2 x - y + 5 z = 3 по методу Крамера, тогда получаем, что:

∆ = 1 2 0 5 0 - 2 2 - 1 5 = - 60 ∆ x = - 1 2 0 5 0 - 2 3 - 1 5 = - 60 ⇔ x = ∆ x ∆ = - 60 - 60 = 1 ∆ y = 1 - 1 0 5 5 2 2 3 5 = 60 ⇒ y = ∆ y ∆ = 60 - 60 = - 1 ∆ z = 1 2 - 1 5 0 5 2 - 1 3 = 0 ⇒ z = ∆ z ∆ = 0 - 60 = 0

Отсюда имеем, что H 1 (1 , - 1 , 0) .

M 1 H 1 = 1 - 2 2 + - 1 - - 4 2 + 0 - - 1 2 = 11

Второй способ необходимо начать с поиска координат в каноническом уравнении. Для этого необходимо обратит внимание на знаменатели дроби. Тогда a → = 2 , - 1 , 5 является направляющим вектором прямой x + 1 2 = y - 1 = z + 5 5 . Необходимо вычислить длину по формуле a → = 2 2 + (- 1) 2 + 5 2 = 30 .

Понятно, что прямая x + 1 2 = y - 1 = z + 5 5 пересекает точку M 3 (- 1 , 0 , - 5) , отсюда имеем, что вектор с началом координат M 3 (- 1 , 0 , - 5) и его концом в точке M 1 2 , - 4 , - 1 является M 3 M 1 → = 3 , - 4 , 4 . Находим векторное произведение a → = (2 , - 1 , 5) и M 3 M 1 → = (3 , - 4 , 4) .

Мы получаем выражение вида a → × M 3 M 1 → = i → j → k → 2 - 1 5 3 - 4 4 = - 4 · i → + 15 · j → - 8 · k → + 20 · i → - 8 · j → = 16 · i → + 7 · j → - 5 · k →

получаем, что длина векторного произведения равняется a → × M 3 M 1 → = 16 2 + 7 2 + - 5 2 = 330 .

Имеются все данные для использования формулы вычисления расстояния от точки для прямлой, поэтому применим ее и получим:

M 1 H 1 = a → × M 3 M 1 → a → = 330 30 = 11

Ответ: 11 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Формула для вычисления расстояния от точки до прямой на плоскости

Если задано уравнение прямой Ax + By + C = 0, то расстояние от точки M(M x , M y) до прямой можно найти, используя следующую формулу

Примеры задач на вычисление расстояния от точки до прямой на плоскости

Пример 1.

Найти расстояние между прямой 3x + 4y - 6 = 0 и точкой M(-1, 3).

Решение. Подставим в формулу коэффициенты прямой и координаты точки

Ответ: расстояние от точки до прямой равно 0.6.

уравнение плоскости проходящей через точки перпендикулярно векторуОбщее уравнение плоскости

Ненулевой вектор , перпендикулярный заданной плоскости, называетсянормальным вектором (или, короче, нормалью ) для этой плоскости.

Пусть в координатном пространстве (в прямоугольной системе координат) заданы:

а) точка ;

б) ненулевой вектор (рис.4.8,а).

Требуется составить уравнение плоскости, проходящей через точку перпендикулярно векторуКонец доказательства.

Рассмотрим теперь различные типы уравнений прямой на плоскости.

1) Общее уравнение плоскости P .

Из вывода уравнения следует, что одновременно A , B и C не равны 0 (объясните почему).

Точка принадлежит плоскостиP только в том случае, когда ее координаты удовлетворяют уравнению плоскости. В зависимости от коэффициентов A , B , C и D плоскость P занимает то или иное положение:

‑ плоскость проходит через начало системы координат, ‑ плоскость не проходит через начало системы координат,

‑ плоскость параллельна оси X ,

X ,

‑ плоскость параллельна оси Y ,

‑ плоскость не параллельна оси Y ,

‑ плоскость параллельна оси Z ,

‑ плоскость не параллельна оси Z .

Докажите эти утверждения самостоятельно.

Уравнение (6) легко выводится из уравнения (5). Действительно, пусть точка лежит на плоскости P . Тогда ее координаты удовлетворяют уравнениюВычитая из уравнения (5) уравнение (7) и группируя слагаемые, получим уравнение (6). Рассмотрим теперь два вектора с координатами соответственно. Из формулы (6) следует, что их скалярное произведение равно нулю. Следовательно, вектор перпендикулярен вектору Начало и конец последнего вектора находятся соответственно в точках которые принадлежат плоскости P . Следовательно, вектор перпендикулярен плоскости P . Расстояние от точкидо плоскости P , общее уравнение которой определяется по формулеДоказательство этой формулы полностью аналогично доказательству формулы расстояния между точкой и прямой (см. рис. 2).
Рис. 2. К выводу формулы расстояния между плоскостью и прямой.

Действительно, расстояние d между прямой и плоскостью равно

где ‑ точка лежащая на плоскости. Отсюда, как и в лекции № 11, получается выше приведенная формула. Две плоскости параллельны, если параллельны их нормальные вектора. Отсюда получаем условие параллельности двух плоскостей‑ коэффициенты общих уравнений плоскостей . Две плоскости перпендикулярны, если перпендикулярны их нормальные вектора, отсюда получаем условие перпендикулярности двух плоскостей, если известны их общие уравнения

Угол f между двумя плоскостями равен углу между их нормальными векторами (см. рис. 3) и может, поэтому, быть вычислен по формуле
Определение угла между плоскостями.

(11)

Расстояние от точки до плоскости и способы его нахождения

Расстояние от точки до плоскости – длина перпендикуляра, опущенного из точки на эту плоскость. Существует, по крайней мере, два способа найти расстояние от точки до плоскости:геометрический и алгебраический .

При геометрическом способе нужно сначала понять, как расположен перпендикуляр из точки на плоскость: может он лежит в какой –то удобной плоскости, является высотой в какой-нибудь удобном (или не очень) треугольнике, а может этот перпендикуляр вообще является высотой в какой-нибудь пирамиде.

После этого первого и самого сложного этапа задача распадается на несколько конкретных планиметрических задач (быть может, в разных плоскостях).

При алгебраическом способе для того, чтобы найти расстояние от точки до плоскости, нужно ввести систему координат, найти координаты точки и уравнение плоскости, и после этого применить формулу расстояния от точки до плоскости.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz , задана точка , прямая a и требуется найти расстояние от точки А до прямой a .

Покажем два способа, позволяющих вычислять расстояние от точки до прямой в пространстве. В первом случае нахождение расстояния от точки М 1 до прямой a сводится к нахождению расстояния от точки М 1 до точки H 1 , где H 1 - основание перпендикуляра, опущенного из точкиМ 1 на прямую a . Во втором случае расстояние от точки до плоскости будем находить как высоту параллелограмма.

Итак, приступим.

Первый способ нахождения расстояния от точки до прямой a в пространстве.

Так как по определению расстояние от точки М 1 до прямой a – это длина перпендикуляраM 1 H 1 , то, определив координаты точки H 1 , мы сможем вычислить искомое расстояние как расстояние между точками и по формуле .

Таким образом, задача сводится к нахождению координат основания перпендикуляра, построенного из точки М 1 к прямой a . Сделать это достаточно просто: точка H 1 – это точка пересечения прямой a с плоскостью, проходящей через точку М 1 перпендикулярно к прямой a .

Следовательно, алгоритм, позволяющий определять расстояние от точки до прямой a в пространстве , таков:

Второй способ, позволяющий находить расстояние от точки до прямой a в пространстве.

Так как в условии задачи нам задана прямая a , то мы можем определить ее направляющий вектор и координаты некоторой точки М 3 , лежащей на прямой a . Тогда по координатам точек и мы можем вычислить координаты вектора : (при необходимости обращайтесь к статье координаты вектора через координаты точек его начала и конца).

Отложим векторы и от точки М 3 и построим на них параллелограмм. В этом параллелограмме проведем высоту М 1 H 1 .

Очевидно, высота М 1 H 1 построенного параллелограмма равна искомому расстоянию от точкиМ 1 до прямой a . Найдем .

С одной стороны площадь параллелограмма (обозначим ее S ) может быть найдена черезвекторное произведение векторов и по формуле . С другой стороны площадь параллелограмма равна произведению длины его стороны на высоту, то есть, , где - длина вектора , равная длине стороны рассматриваемого параллелограмма. Следовательно, расстояние от заданной точки М 1 до заданной прямой a может быть найдена из равенства как .

Итак, чтобы найти расстояние от точки до прямой a в пространстве нужно

Решение задач на нахождение расстояния от заданной точки до заданной прямой в пространстве.

Рассмотрим решение примера.

Пример.

Найдите расстояние от точки до прямой .

Решение.

Первый способ.

Напишем уравнение плоскости , проходящей через точку М 1 перпендикулярно заданной прямой:

Найдем координаты точки H 1 - точки пересечения плоскости и заданной прямой. Для этого выполним переход от канонических уравнений прямой к уравнениям двух пересекающихся плоскостей

после чего решим систему линейных уравнений методом Крамера:

Таким образом, .

Осталось вычислить требуемое расстояние от точки до прямой как расстояние между точками и : .

Второй способ.

Числа, стоящие в знаменателях дробей в канонических уравнениях прямой, представляют собой соответствующие координаты направляющего вектора этой прямой, то есть, - направляющий вектор прямой . Вычислим его длину: .

Очевидно, что прямая проходит через точку , тогда вектор с началом в точке и концом в точке есть . Найдем векторное произведение векторов и :
тогда длина этого векторного произведения равна .

Теперь мы располагаем всеми данными, чтобы воспользоваться формулой для вычисления расстояния от заданной точки до заданной плоскости: .

Ответ:

Взаимное расположение прямых в пространстве

Требуется определить расстояние от точки до прямой. Общий план решения задачи:

- через заданную точку проводим плоскость, перпендикулярную заданной прямой;

- находим точку встречи прямой

с плоскостью;

- определяем натуральную величину расстояния.

Через заданную точку проводим плоскость, перпендикулярную прямой АВ . Плоскость задаем пересекающимися горизонталью и фронталью, проекции которых строим согласно алгоритму перпендикулярности (обратная задача).

Находим точку встречи прямой АВ с плоскостью. Это типовая задача о пересечении прямой с плоскостью (см. разд. «Пересечение прямой с плоскостью»).

Перпендикулярность плоскостей

Плоскости взаимно перпендикулярны, если одна из них содержит прямую, перпендикулярную другой плоскости. Поэтому для проведения плоскости, перпендикулярной другой плоскости, необходимо сначала провести перпендикуляр к плоскости, а затем через него провести искомую плоскость. На эпюре плоскость задана двумя пересекающимися прямыми, одна из которых перпендикулярна плоскости ABC .

Если плоскости заданы следами, то возможны следующие случаи:

- если две перпендикулярные плоскости являются проецирующими, то их собирательные следы взаимно перпендикулярны;

- плоскость общего положения и проецирующая плоскость перпендикулярны, ссли собирательный след проецирующей плоскости перпендикулярен одноименному слсду плоскости общего положения;

- если одноименные следы двух плоскостей общего положения перпендикулярны, то плоскости не перпендикулярны друг другу.

Метод замены плоскостей проекций

замены плоскостей проекций

заключается в том, что плоскости про-

екций заменяются другими плоскос-

так, чтобы

геометрический

объект в новой системе плоскостей

проекций стал занимать частное -по

ложение, что позволяет упростить ре-

шение задач. На пространственном ма-

кете показана замена плоскостиV на

новую V 1 . Показано также проециро-

вание точки А на исходные плоскости

проекций и новую плоскость проекций

V 1 . При замене плоскостей проекций

ортогональность системы сохраняется.

Преобразуем пространственный макет в плоскостной путем поворота плоскостей по стрелкам. Получим три плоскости проекций, совмещенные в одну плоскость.

Затем удалим плоскости проекций и

проекции

Из эпюра точки следует правило: при

замене V на V 1 для того, чтобы по-

фронтальную

цию точки, необходимо от новой оси

отложить аппликату точки, взятую из

предыдущей системы плоскостей про-

екций. Аналогично можно доказать,

замене Н на Н 1 необходимо

отложить ординату точки.

Первая типовая задача метода замены плоскостей проекций

Первая типовая задача метода замены плоскостей проекций – это преобразование прямой общего положения сначала в линию уровня, а затем в проецирующую прямую. Эта задача является одной из основных, так как применяется при решении других задач, например, при определении расстояния между параллельными и скрещивающимися прямыми, при определении двугранного угла и т.д.

Производим замену V → V 1 .

ось проводим параллельно горизон-

проекции.

фронтальную проекцию прямой, для

откладываем

аппликаты точек. Новая фронтальная

проекция прямой является НВ прямой.

Сама прямая становится фронталью.

Определяется угол α °.

Производим замену Н → Н 1 . Новую ось проводим перпендикулярно фронтальной проекции прямой. Строим новую горизонтальную проекцию прямой, для чего от новой оси откладываем ординаты прямой, взятые из предыдущей системы плоскостей проекций. Прямая становится горизон- тально-проецирующей прямой и «вырождается» в точку.

gastroguru © 2017