Фотоэлектрическое преобразование солнечной энергии. Расчет фотоэлектрической системы Фотогальванический метод преобразования солнечной энергии в электрическую

Солнечная энергетика - направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует неисчерпаемый источник энергии и является экологически чистой, то есть не производящей вредных отходов. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии.

Фотовольтаика - метод выработки электрической энергии путем использования фоточувствительных элементов для преобразования солнечной энергии в электричество.

Гелиотермальная энергетика - один из способов практического использования возобновляемого источника энергии - солнечной энергии, применяемый для преобразования солнечной радиации в тепло воды или легкокипящего жидкого теплоносителя. Гелиотермальная энергетика применяется как для промышленного получения электроэнергии, так и для нагрева воды для бытового применения.

Солнечная батарея - бытовой термин, используемый в разговорной речи или ненаучной прессе. Обычно под термином «солнечная батарея» или «солнечная панель» подразумевается несколько объединённых фотоэлектрических преобразователей (фотоэлементов) - полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток.

Термин «фотовольтаика» означает обычный рабочий режим фотодиода, при котором электрический ток возникает исключительно благодаря преобразованной энергии света. Фактически, все фотовольтаические устройства являются разновидностями фотодиодов.

Фотоэлектрические преобразователи (ФЭП)

В фотовольтаических системах преобразование солнечной энергии в электрическую осуществляется в фотоэлектрических преобразователях (ФЭП). В зависимости от материала, конструкции и способа производства принято различать три поколения ФЭП:

    ФЭП первого поколения на основе пластин кристаллического кремния;

    ФЭП второго поколения на основе тонких пленок;

    ФЭП третьего поколения на основе органических и неорганических материалов.

Для повышения эффективности преобразования солнечной энергии разрабатываются ФЭП на основе каскадных многослойных структур.

ФЭП первого поколения

ФЭП первого поколения на основе кристаллических пластин на сегодняшний день получили наибольшее распространение. В последние два года производителям удалось сократить себестоимость производства таких ФЭП, что обеспечило укрепление их позиций на мировом рынке.

Виды ФЭП первого поколения:

    монокристаллический кремний (mc-Si),

    поликристаллический кремний (m-Si),

    на основе GaAs,

    ribbon-технологии (EFG, S-web),

    тонкослойный поликремний (Apex).

ФЭП второго поколения

Технология выпуска тонкопленочных ФЭП второго поколения подразумевает нанесение слоев вакуумным методом. Вакуумная технология по сравнению с технологией производства кристаллических ФЭП является менее энергозатратной, а также характеризуется меньшим объемом капитальных вложений. Она позволяет выпускать гибкие дешевые ФЭП большой площади, однако коэффициент преобразования таких элементов ниже по сравнению с ФЭП первого поколения.

Виды ФЭП второго поколения:

    аморфный кремний (a-Si),

    микро- и нанокремний (μc-Si/nc-Si),

    кремний на стекле (CSG),

    теллурид кадмия (CdTe),

    (ди)селенид меди-(индия-)галлия (CI(G)S).

ФЭП третьего поколения

Идея создания ФЭП третьего поколения заключалась в дальнейшем снижении себестоимости ФЭП, отказе от использования дорогих и токсичных материалов в пользу дешевых и перерабатываемых полимеров и электролитов. Важным отличием также является возможность нанесения слоев печатными методами.

В настоящее время основная часть проектов в области ФЭП третьего поколения находятся на стадии исследований.

Виды ФЭП третьего поколения:

    фотосенсибилизированные красителем (DSC),

    органические (OPV),

    неорганические (CTZSS).

Установка и использование

ФЭП собираются в модули, которые имеют нормируемые установочные размеры, электрические параметры и показатели надежности. Для установки и передачи электроэнергии солнечные модули комплектуются инверторами тока, аккумуляторами и прочими элементами электрической и механической подсистем.

В зависимости от области применения различают следующие виды инсталляций солнечных систем:

    частные станции малой мощности, размещаемые на крышах домов;

    коммерческие станции малой и средней мощности, располагаемые, как на крышах, так и на земле;

    промышленные солнечные станции, обеспечивающие энергоснабжение многих потребителей.

Максимальные значения эффективности фотоэлементов и модулей, достигнутые в лабораторных условиях

Факторы, влияющие на эффективность фотоэлементов

Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.

Производство

Очень часто одиночные фотоэлементы не вырабатывают достаточной мощности. Поэтому определенное количество PV элементов соединяется в так называемые фотоэлектрические солнечные модули и между стеклянными пластинами монтируется укрепление. Эта сборка может быть полностью автоматизирована.

Достоинства

    Общедоступность и неисчерпаемость источника.

    Безопасность для окружающей среды - хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо (характеристику отражательной (рассеивающей) способности) земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).

Недостатки

    Зависимость от погоды и времени суток.

    Необходимость аккумуляции энергии.

    При промышленном производстве -- необходимость дублирования солнечных ЭС маневренными ЭС сопоставимой мощности.

    Высокая стоимость конструкции, связанная с применением редких элементов (к примеру, индий и теллур).

    Необходимость периодической очистки отражающей поверхности от пыли.

    Нагрев атмосферы над электростанцией.

Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП, среди которых наиболее важную роль играет фотопроводимость. Она обусловлена явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом.

Основные необратимые потери энергии в ФЭП связаны с:

    отражением солнечного излучения от поверхности преобразователя,

    прохождением части излучения через ФЭП без поглощения в нём,

    рассеянием на тепловых колебаниях решётки избыточной энергии фотонов,

    рекомбинацией образовавшихся фото-пар на поверхностях и в объёме ФЭП,

    внутренним сопротивлением преобразователя и др.

Наиболее эффективными с энергетической точки зрения устройствами для превращения солнечной энергии в электрическую (т.к. это прямой, одноступенчатый переход энергии) являются полупроводниковые фотоэлектрические преобразователи (ФЭП). При характерной для ФЭП равновесной температуре порядка 300-350 Кельвинов и Т солнца ~ 6000 К их предельный теоретический КПД >90 % . Это означает, что, в результате оптимизации структуры и параметров преобразователя, направленной на снижение необратимых потерь энергии, вполне реально удастся поднять практический КПД до 50% и более (в лабораториях уже достигнут КПД 40%).

Теоретические исследования и практические разработки, в области фотоэлектрического преобразования солнечной энергии подтвердили возможность реализации столь высоких значений КПД с ФЭП и определили основные пути достижения этой цели.

Преобразование энергии в ФЭП основано на фотовольтаическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.Неоднородность структуры ФЭП может быть получена легированием одного и того же полупроводника различными примесями (создание p - n-переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны-энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов. Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП, среди которых наиболее важную роль играет фотопроводимость, обусловленная явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом. Принцип работы ФЭП можно пояснить на примере преобразователей с p-n- переходом, которые широко применяются в современной солнечной и космической энергетике. Электронно-дырочный переход создаётся путём легирования пластинки монокристаллического полупроводникового материала с определённым типом проводимости (т.е. или p- или n- типа) примесью, обеспечивающей создание поверхностного слоя с проводимостью противоположного типа. Концентрация легирующей примеси в этом слое должна быть значительно выше, чем концентрация примеси в базовом (первоначальном монокристалле) материале, чтобы нейтрализовать имеющиеся там основные свободные носители заряда и создать проводимость противоположного знака. У границы n-и p- слоёв в результате перетечки зарядов образуются обеднённые зоны с нескомпенсированным объёмным положительным зарядом в n-слое и объёмным отрицательным зарядом в p-слое. Эти зоны в совокупности и образуют p-n-переход. Возникший на переходе потенциальный барьер (контактная разность потенциалов) препятствует прохождению основных носителей заряда, т.е. электронов со стороны p-слоя, но беспрепятственно пропускают неосновные носители в противоположных направлениях. Это свойство p-n-переходов и определяет возможность получения фото-ЭДС при облучении ФЭП солнечным светом. Созданные светом в обоих слоях ФЭП неравновесные носители заряда (электронно-дырочные пары) разделяются на p-n-переходе: неосновные носители (т.е.электроны) свободно проходят через переход, а основные (дырки) задерживаются. Таким образом, под действием солнечного излучения через p-n-переход в обоих направлениях будет протекать ток неравновесных неосновных носителей заряда- фотоэлектронов и фотодырок, что как раз и нужно для работы ФЭП. Если теперь замкнуть внешнюю цепь, то электроны из n-слоя, совершив работу на нагрузке, будут возвращаться в p-слой и там рекомбинировать (объединяться) с дырками, движущимися внутри ФЭП в противоположном направлении. Для сбора и отвода электронов во внешнюю цепь на поверхности полупроводниковой структуры ФЭП имеется контактная система. На передней, освещённой поверхности преобразователя контакты выполняются в виде сетки или гребёнки, а на тыльной могут быть сплошными. Основные необратимые потери энергии в ФЭП связаны с:

  • Ш отражением солнечного излучения от поверхности преобразователя,
  • Ш прохождением части излучения через ФЭП без поглощения в нём,
  • Ш рассеянием на тепловых колебаниях решётки избыточной энергии фотонов,
  • Ш рекомбинацией образовавшихся фотопар на поверхностях и в объёме ФЭП,
  • Ш внутренним сопротивлением преобразователя,
  • Ш и некоторыми другими физическими процессами.

Для уменьшения всех видов потерь энергии в ФЭП разрабатываются и успешно применяется различные мероприятия. К их числу относятся:

ь использование полупроводников с оптимальной для солнечного излучения шириной запрещённой зоны;

ь направленное улучшение свойств полупроводниковой структуры путём её оптимального легирования и создания встроенных электрических полей;

ь переход от гомогенных к гетерогенным и варизонным полупроводниковым структурам;

ь оптимизация конструктивных параметров ФЭП (глубины залегания p-n-перехода, толщины базового слоя, частоты контактной сетки и др.);

ь применение многофункциональных оптических покрытий, обеспечивающих просветление, терморегулирование и защиту ФЭП от космической радиации;

ь разработка ФЭП, прозрачных в длинноволновой области солнечного спектра за краем основной полосы поглощения;

ь создание каскадных ФЭП из специально подобранных по ширине запрещённой зоны полупроводников, позволяющих преобразовывать в каждом каскаде излучение, прошедшее через предыдущий каскад, и пр.;

Также существенного повышения КПД ФЭП удалось добиться за счёт создания преобразователей с двухсторонней чувствительностью (до +80 % к уже имеющемуся КПД одной стороны), применения люминесцентно переизлучающих структур, предварительного разложения солнечного спектра на две или более спектральные области с помощью многослойных плёночных светоделителей (дихроичных зеркал) с последующим преобразованием каждого участка спектра отдельным ФЭП и т.д.5

В системах преобразования энергии СЭС (солнечных электростанций) в принципе могут быть использованы любые созданные и разрабатываемые в настоящее время типы ФЭП различной структуры на базе разнообразных полупроводниковых материалов, однако не все они удовлетворяют комплексу требований к этим системам:

  • · высокая надёжность при длительном (десятки лет!) ресурсе работы;
  • · доступность исходных материалов в достаточном для изготовления элементов системы преобразования количестве и возможность организации их массового производства;
  • · приемлемые с точки зрения сроков окупаемости энергозатраты на создание системы преобразования;
  • · минимальные расходы энергии и массы, связанные с управлением системой преобразования и передачи энергии (космос),включая ориентацию и стабилизацию станции в целом;
  • · удобство техобслуживания.

Так, например, некоторые перспективные материалы трудно получить в необходимых для создания СЭС количествах из-за ограниченности природных запасов исходного сырья и сложности его переработки. Отдельные методы улучшения энергетических и эксплутационных характеристик ФЭП, например, за счёт создания сложных структур, плохо совместимы с возможностями организации их массового производства при низкой стоимости и т.д. Высокая производительность может быть достигнута лишь при организации полностью автоматизированного производства ФЭП, например на основе ленточной технологии, и создании развитой сети специализированных предприятий соответствующего профиля, т.е. фактически целой отрасли промышленности, соизмеримой по масштабам с современной радиоэлектронной промышленностью. Изготовление солнечных элементов и сборка солнечных батарей на автоматизированных линиях обеспечит снижение себестоимости модуля батареи в 2-2,5 раза.В качестве наиболее вероятных материалов для фотоэлектрических систем преобразования солнечной энергии СЭС в настоящее время рассматривается кремний и арсенид галлия (GaAs), причём в последнем случае речь идёт о гетерофотопреобразователях (ГФП) со структурой AlGaAs-GaAs.

ФЭП (фотоэлектрические преобразователи) на основе соединения мышьяка с галлием (GaAs), как известно, имеют более высокий, чем кремниевые ФЭП, теоретический КПД, так как ширина запрещённой зоны у них практически совпадает с оптимальной шириной запрещённой зоны для полупроводниковых преобразователей солнечной энергии =1,4 эВ. У кремниевых этот показатель =1,1 эВ.

Вследствие более высокого уровня поглощения солнечного излучения, определяемого прямыми оптическими переходами в GaAs, высокие КПД ФЭП на их основе могут быть получены при значительно меньшей по сравнению с кремнием толщине ФЭП. Принципиально достаточно иметь толщину ГФП 5-6 мкм для получения КПД порядка не менее 20 %, тогда как толщина кремниевых элементов не может быть менее 50-100мкм без заметного снижения их КПД. Это обстоятельство позволяет рассчитывать на создание лёгких плёночных ГФП, для производства которых потребуется сравнительно мало исходного материала, особенно если в качестве подложки удастся использовать не GaAs ,а другой материал, например синтетический сапфир (Al 2 O 3).

ГФП обладают также более благоприятными с точки зрения требований к преобразователям СЭС эксплутационными характеристиками по сравнению с кремниевыми ФЭП. Так, в частности, возможность достижения малых начальных значений обратных токов насыщения в p-n-переходах благодаря большой ширине запрещённой зоны позволяет свести к минимуму величину отрицательных температурных градиентов КПД и оптимальной мощности ГФП и, кроме того, существенно расширять область линейной зависимости последней от плотности светового потока. Экспериментальные зависимости КПД ГФП от температуры говорят о том, что повышение равновесной температуры последних до 150-180 °С не приводит к существенному снижению их КПД и оптимальной удельной мощности. В то же время для кремниевых ФЭП повышение температуры выше 60-70 °С является почти критическим - КПД падает вдвое.

Благодаря устойчивости к высоким температурам арсенид-галлиевые ФЭП позволяют применять к ним концентраторы солнечного излучения. Рабочая температура ГФП на GaAs доходит до 180 °С, что уже является вполне рабочими температурами и для тепловых двигателей, паротурбин. Таким образом, к 30-процентному собственному КПД арсенид-галлиевых ГФП (при 150°C) можно прибавить КПД теплового двигателя, использующего сбросовое тепло охлаждающей фотоэлементы жидкости. Поэтому общий КПД установки, которая к тому же использует и третий цикл отбора низкотемпературного тепла у охлаждающей жидкости после турбины на обогрев помещений - может быть даже выше 50-60 %.

Также ГФП на основе GaAs в значительно меньшей степени, чем кремниевые ФЭП, подвержены разрушению потоками протонов и электронов высоких энергий вследствие высокого уровня поглощения света в GaAs, а также малых требуемых значений времени жизни и диффузионной длины неосновных носителей. Более того, эксперименты показали, что значительная часть радиационных дефектов в ГФП на основе GaAs исчезает после их термообработки (отжига) при температуре как раз порядка 150-180 °С. Если ГФП из GaAs будут постоянно работать при температуре порядка 150 °С, то степень радиационной деградации их КПД будет относительно небольшой на протяжении всего срока активного функционирования станций (особенно это касается космических солнечных энергоустановок, для которых важен малые вес и размер ФЭП и высокий КПД).

В целом можно заключить, что энергетические, массовые и эксплутационные характеристики ГФП на основе GaAs в большей степени соответствуют требованиям СЭС и СКЭС (космич.), чем характеристики кремниевых ФЭП. Однако кремний является значительно более доступным и освоенным в производстве материалом, чем арсенид галлия. Кремний широко распространён в природе, и запасы исходного сырья для создания ФЭП на его основе практически неограниченны. Технология изготовления кремниевых ФЭП хорошо отработана и непрерывно совершенствуется. Существует реальная перспектива снижения стоимости кремниевых ФЭП на один - два порядка при внедрении новых автоматизированных методов производства, позволяющих в частности, получать кремниевые ленты, солнечные элементы большой площади и т.п.

Цены на кремниевые фотоэлектрические батареи снизились за 25 лет в 20-30 раз с 70-100 долл/ватт в семидесятых годах вплоть до 3,5 долл/ватт в 2000 г. и продолжают снижаться далее. На Западе ожидается переворот в энергетике в момент перехода цены 3-долларового рубежа. По некоторым расчётам, это может произойти уже в 2002 г., а для России с нынешними энерготарифами этот момент наступит при цене 1 ватта СБ 0,3-0,5 доллара, то есть, при на порядок более низкой цене. Тут играют роль вместе взятые: тарифы, климат, географические широты, способности государства к реальному ценообразованию и долгосрочным инвестициям. В реально действующих структурах с гетеропереходами КПД достигает на сегодняшний день более 30% , а в однородных полупроводниках типа монокристаллического кремния - до 18%. Среднее значение КПД в солнечных батареях на монокристаллическом кремнии сегодня около 12%, хотя достигает и 18%. Именно, в основном, кремниевые СБ можно видеть сегодня на крышах домов разных стран мира.

В отличие от кремния галлий является весьма дефицитным материалом, что ограничивает возможности производства ГФП на основе GaAs в количествах, необходимых для широкого внедрения.

Галлий добывается в основном из бокситов, однако рассматривается также возможность его получения из угольной золы и морской воды. Самые большие запасы галлия содержатся в морской воде, однако его концентрация там весьма невелика, выход при извлечении оценивается величиной всего в 1% и, следовательно, затраты на производство будут, вероятно, чрезмерно большими. Технология производства ГФП на основе GaAs с использованием методов жидкостной и газовой эпитаксии (ориентированного роста одного монокристалла на поверхности другого {на подложке}), не развита ещё до такой степени, как технология производства кремниевых ФЭП и в результате этого стоимость ГФП сейчас существенно выше (на порядки) стоимости ФЭП из кремния.

В космических аппаратах, где основным источником тока являются солнечные батареи и где очень важны понятные соотношения массы, размера и КПД, главным материалом для солн. батарей, конечно, является арсенид галлия. Очень важна для космических СЭС способность этого соединения в ФЭП не терять КПД при нагревании концентрированным в 3-5 раз солнечным излучением, что соответственно, снижает потребности в дефицитном галлии. Дополнительный резерв экономии галлия связан с использованием в качестве подложки ГФП не GaAs, а синтетического сапфира (Al 2 O 3).Стоимость ГФП при их массовом производстве на базе усовершенствованной технологии будет, вероятно, также значительно снижена, и в целом стоимость системы преобразования системы преобразования энергии СЭС на основе ГФП из GaAs может оказаться вполне соизмеримой со стоимостью системы на основе кремния. Таким образом, в настоящее время трудно до конца отдать явное предпочтение одному из двух рассмотренных полупроводниковых материалов- кремнию или арсениду галлия, и лишь дальнейшее развитие технологии их производства покажет, какой вариант окажется более рационален для наземной и космической солнечных энергетик. Постольку-поскольку СБ выдают постоянный ток, то встаёт задача трансформации его в промышленный переменный 50 Гц,220 В. С этой задачей отлично справляется специальный класс приборов- инверторы.

Загатин Сергей

Тема моей работы «Фотоэлектрические преобразования солнечной энергии» наиболее актуальна в настоящее время.

В реферате я описал методы преобразования солнечной энергии, которые могут обеспечить бурно растущие потребности в энергии в течение многих тысяч лет. Электроэнергия является наиболее удобным для использования и передачи видом энергии, так как Солнечное излучение является практически неисчерпаемым источником энергии.

По моему мнению, крупномасштабное развитие фотоэнергии даст огромный толчок развитию районов Земли с высоким среднегодовым поступлением солнечного излучения.

Скачать:

Предварительный просмотр:

Выполнил: Загатин С.В.

учащийся 10 А класса

Руководитель: Лучина Т.В.

учитель физики

2008

ВВЕДЕНИЕ…………………………………………………………

ПРЕОБРАЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ - ПЕРСПЕКТИВНЫЙ ПУТЬ РАЗВИТИЯ ЭНЕРГЕТИКИ…...

ФОТОЭЛЕКТРИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ…………………………………………………………..

ЗАКЛЮЧЕНИЕ……………………………………………………

ЛИТЕРАТУРА………………………………………………………

ВВЕДЕНИЕ

Быстрый рост энергопотребления является одной из наиболее характерных особенностей технической деятельности человечества во второй половине XX века. Развитие энергетики до недавнего времени не встречало принципиальных трудностей. Увеличение производства энергии происходило в основном за счет увеличения добычи нефти и газа, наиболее удобных в потреблении. Однако энергетика оказалась первой крупной отраслью мировой экономики, которая столкнулась с ситуацией истощения своей традиционной сырьевой базы. В начале 70-х годов энергетический кризис разразился во многих странах. Одной из причин этого кризиса явилась ограниченность ископаемых энергетических ресурсов. Кроме того, нефть, газ и уголь являются также ценнейшим сырьем для интенсивно развивающейся химической промышленности. Поэтому сейчас все труднее сохранить высокий темп развития энергетики путем использования лишь традиционных ископаемых источников энергии.

Атомная энергетика в последнее время также столкнулась со значительными трудностями, связанными, в первую очередь, с необходимостью резкого увеличения затрат на обеспечение безопасности работы атомных электростанций.

Загрязнение окружающей среды продуктами сгорания ископаемых источников, в первую очередь угля и ядерного топлива, является причиной ухудшения экологической обстановки на Земле. Существенным является также и "тепловое загрязнение" планеты, происходящее при сжигании любого вида топлива. Допустимый верхний предел выработки энергии на Земле, по оценкам ряда ученых, всего на два порядка выше нынешнего среднего мирового уровня. Такой рост энергопотребления может привести к увеличению температуры на поверхности Земли примерно на один градус. Нарушение энергобаланса планеты в таких масштабах может дать необратимые опасные изменения климата. Эти обстоятельства определяют возрастающую роль возобновляемых источников энергии, широкое использование которых не приведет к нарушению экологического баланса Земли.

  1. ПРЕОБРАЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ - ПЕРСПЕКТИВНЫЙ ПУТЬ

Большинство возобновляемых видов энергии - гидроэнергия, механическая и тепловая энергия мирового океана, ветровая и геотермальная энергия - характеризуется либо ограниченным потенциалом, либо значительными трудностями широкого использования. Суммарный потенциал большинства возобновляемых источников энергии позволит увеличить потребление энергии с нынешнего уровня всего лишь на порядок. Но существует еще один источник энергии - Солнце. Солнце, звезда спектрального класса 2, желтый карлик, очень средняя звезда по всем своим основным параметрам: массе, радиусу, температуре и абсолютной величине. Но эта звезда имеет одну уникальную особенность - это "наша звезда", и человечество обязано всем своим существованием этой средней звезде. Наше светило поставляет Земле мощность около 10 17 Вт - такова сила "солнечного зайчика" диаметром 12,7 тыс. км, который постоянно освещает обращенную к Солнцу сторону нашей планеты. Интенсивность солнечного света на уровне моря в южных широтах, когда Солнце в зените, составляет 1 кВт/м 2 . При разработке высокоэффективных методов преобразования солнечной энергии Солнце может обеспечить бурно растущие потребности в энергии в течение многих сотен лет.

Доводы противников крупномасштабного использования солнечной энергии сводятся в основном к следующим аргументам:

  1. Удельная мощность солнечной радиации мала, и крупномасштабное преобразование солнечной энергии потребует очень больших площадей.
  2. Преобразование солнечной энергии очень дорого и требует практически нереальных материальных и трудовых затрат.

Действительно, как велика будет площадь Земли, покрытой преобразовательными системами, для производства заметной в мировом энергетическом бюджете доли электроэнергии? Очевидно, что эта площадь зависит от эффективности используемых преобразовательных систем. Для оценки эффективности фотоэлектрических преобразователей, осуществляющих прямое преобразование солнечной энергии в электрическую с помощью полупроводниковых фотоэлементов, введем понятие коэффициента полезного действия (КПД) фотоэлемента, определяемого как отношение мощности электроэнергии, вырабатываемой данным элементом, к мощности падающего на поверхность фотоэлемента солнечного зайчика. Так, при КПД солнечных преобразователей, равном 10% (типичные значения КПД для кремниевых фотоэлементов, широко освоенных в серийном промышленном производстве для нужд наземной энергетики), для производства 10 12 Вт электроэнергии потребовалось бы покрыть фотопреобразователями площадь 4 10 10 м 2 , равную квадрату со стороной 200 км. При этом интенсивность солнечной радиации принята равной 250 Вт/м 2 , что соответствует типичному среднему значению в течение года для южных широт. То есть "низкая плотность" солнечной радиации не является препятствием для развития крупномасштабной солнечной энергетики. Возможные пути создания экономичных преобразователей солнечной энергии будут рассмотрены в следующих разделах настоящей статьи.

Приведенные выше соображения являются достаточно веским аргументом: проблему преобразования солнечной энергии необходимо решать сегодня, чтобы использовать эту энергию завтра. Можно хотя бы в шутку рассматривать эту проблему в рамках решения энергетических задач по управляемому термоядерному синтезу, когда эффективный реактор (Солнце) создан самой природой и обеспечивает ресурс надежной и безопасной работы на многие миллионы лет, а наша задача заключается лишь в разработке наземной преобразовательной подстанции. В последнее время в мире проведены широкие исследования в области солнечной энергетики, которые показали, что уже в ближайшее время этот метод получения энергии может стать экономически оправданным и найти широкое применение.

Россия богата природными ресурсами. Мы имеем значительные запасы ископаемого топлива - угля, нефти, газа. Однако использование солнечной энергии имеет и для нашей страны большое значение. Несмотря на то, что значительная часть территории России лежит в высоких широтах, некоторые весьма большие южные районы нашей страны по своему климату очень благоприятны для широкого использования солнечной энергии.

Еще большие перспективы имеет использование солнечной энергии в странах экваториального пояса Земли и близких к этому поясу районах, характеризуемых высоким уровнем поступления солнечной энергии. Так, в ряде районов Центральной Азии продолжительность прямого солнечного облучения достигает 3000 часов в год, а годовой приход солнечной энергии на горизонтальную поверхность составляет 1500 - 1850 кВт час/м 2 .

Главными направлениями работ в области преобразования солнечной энергии в настоящее время являются:

  • прямой тепловой нагрев (получение тепловой энергии) и термодинамическое преобразование (получение электрической энергии с промежуточным преобразованием солнечной энергии в тепловую);
  • фотоэлектрическое преобразование солнечной энергии.

Прямой тепловой нагрев является наиболее простым методом преобразования солнечной энергии и широко используется в южных районах России и в странах экваториального пояса в установках солнечного отопления, снабжения горячей водой, охлаждения зданий, опреснения воды и т.п. Основой солнечных теплоиспользующих установок являются плоские солнечные коллекторы - поглотители солнечного излучения. Вода или другая жидкость, находясь в контакте с поглотителем, нагревается и при помощи насоса или естественной циркуляции отводится от него. Затем нагретая жидкость поступает в хранилище, откуда ее потребляют по мере необходимости. Подобное устройство напоминает системы бытового горячего водоснабжения.

Электроэнергия является наиболее удобным для использования и передачи видом энергии. Поэтому понятен интерес исследователей к разработке и созданию солнечных электростанций, использующих промежуточное преобразование солнечной энергии в тепло с последующим его преобразованием в электроэнергию.

В мире сейчас наиболее распространены солнечные тепловые электростанции двух типов: 1) башенного типа (рис. 1) с концентрацией солнечной энергии на одном гелиоприемнике, осуществляемой с помощью большого количества плоских зеркал; 2) рассредоточенные системы из параболоидов и параболоцилиндров, в фокусе которых размещены тепловые приемники и преобразователи малой мощности.

  1. ФОТОЭЛЕКТРИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ

Важный вклад в понимание механизма действия фотоэффекта в полупроводниках внес основатель Физико-технического института (ФТИ) Российской Академии наук академик А.Ф. Иоффе. Он мечтал о применении полупроводниковых фотоэлементов в солнечной энергетике уже в тридцатые годы, когда Б.Т. Коломиец и Ю.П. Маслаковец создали в ФТИ сернисто-таллиевые фотоэлементы с рекордным для того времени КПД = 1%.

Широкое практическое использование для энергетических целей солнечных батарей началось с запуском в 1958 году искусственных спутников Земли - советского " Спутник" -3 и американского "Авангард"-1. С этого времени вот уже более 35 лет полупроводниковые солнечные батареи являются основным и почти единственным источником энергоснабжения космических аппаратов и больших орбитальных станций типа "Салют" и "Мир". Большой задел, наработанный учеными в области солнечных батарей космического назначения, позволил развернуть также работы по наземной фотоэлектрической энергетике.

Основу фотоэлементов составляет полупроводниковая структура с р-п переходом (рис. 2), возникающим на границе двух полупроводников с различными механизмами проводимости. Заметим, что эта терминология берет начало от английских слов positive (положительный) и negative (отрицательный). Получают различные типы проводимости путем изменения типа введенных в полупроводник примесей. Так, например, атомы III группы Периодической системы Д.И. Менделеева, введенные в кристаллическую решетку кремния, придают последнему дырочную (положительную) проводимость, а примеси V группы - электронную (отрицательную). Контакт p- или n- полупроводников приводит к образованию между ними контактного электрического поля, играющего чрезвычайно важную роль в работе солнечного фотоэлемента. Поясним причину возникновения контактной разности потенциалов. При соединении в одном монокристалле полупроводников p- и n-типа возникает диффузионный поток электронов из полупроводника n-типа в полупроводник p-типа и, наоборот, поток дырок из p- в n- полупроводник. В результате такого процесса прилегающая к p-n переходу часть полупроводника p-типа будет заряжаться отрицательно, а прилегающая к p-n переходу часть полупроводника n-типа, наоборот, приобретет положительный заряд. Таким образом, вблизи p-n перехода образуется двойной заряженный слой, который противодействует процессу диффузии электронов и дырок. Действительно, диффузия стремится создать поток электронов из n-области в p-область, а поле заряженного слоя, наоборот, - вернуть электроны в n-область. Аналогичным образом поле p-n переходе противодействует диффузии дырок из p- в n-область. В результате двух процессов, действующих в противоположные стороны (диффузии и движения носителей тока в электрическом поле), устанавливается стационарное, равновесное состояние: на границе возникает заряженный слой, препятствующий проникновению электронов из n-полупроводника, а дырок из p-полупроводника. Другими словами, в области p-n перехода возникает энергетический (потенциальный) барьер, для преодоления которого электроны из n-полупроводника и дырки из p-полупроводника должны затратить определенную энергию. Не останавливаясь на описании электрических характеристик p-n перехода, который широко используется в выпрямителях, транзисторах и других полупроводниковых приборах, рассмотрим работу p-n перехода в фотоэлементах.

При поглощении света в полупроводнике возбуждаются электронно-дырочные пары. В однородном полупроводнике фотовозбуждение увеличивает только энергию электронов и дырок, не разделяя их в пространстве, то есть электроны и дырки разделяются в "пространстве энергий", но остаются рядом в геометрическом пространстве. Для разделения носителей тока и появления фотоэлектродвижущей силы (фотоЭДС) должна существовать дополнительная сила. Наиболее эффективное разделение неравновесных носителей имеет место именно в области p-n перехода (рис. 2). Генерированные вблизи p-n перехода "неосновные" носители (дырки в n-полупроводнике и электроны в p-полупроводнике) диффундируют p-n переходу, подхватываются полем p-n перехода и выбрасываются в полупроводник, в котором они становятся основными носителями: электроны будут локализоваться в полупроводнике n-типа, а дырки - в полупроводнике p-типа. В результате полупроводник p-типа получает избыточный положительный заряд, а полупроводник n-типа - отрицательный. Между n- и p-областями фотоэлемента возникает разность потенциалов - фотоЭДС. Полярность фотоЭДС соответствует "прямому" смещению p-n перехода, которое понижает высоту барьера и способствует инжекции дырок из p-области в n-область и электронов из n-области в p-область. В результате действия этих двух противоположных механизмов - накопления носителей тока под действием света и их оттока из-за понижения высоты потенциального барьера - при разной интенсивности света устанавливается разная величина фотоЭДС. При этом величина фотоЭДС в широком диапазоне освещенностей растет пропорционально логарифму интенсивности света. При очень большой интенсивности света, когда потенциальный барьер оказывается практически нулевым, величина фотоЭДС выходит на "насыщение" и становится равной высоте барьера на неосвещенном p-n переходе. При засветке же прямым, а также сконцентрированным до 100 - 1000 крат солнечным излучением, величина фотоЭДС составляет 50 - 85% от величины контактной разности потенциала p-n перехода.

Мы рассмотрели процесс возникновения фотоЭДС, возникающей на контактах p- и n-областям p-n перехода. При коротком замыкании освещенного p-n перехода в электрической цепи потечет ток, пропорциональный по величине интенсивности освещения и количеству генерированных светом электронно-дырочных пар. При включении в электрическую цепь полезной нагрузки, например питаемого солнечной батареей калькулятора, величина тока в цепи несколько уменьшится. Обычно электрическое сопротивление полезной нагрузки в цепи солнечного элемента выбирают таким, чтобы получить максимальную отдаваемую этой нагрузке электрическую мощность.

Солнечный фотоэлемент изготавливается на основе пластины, выполненной из полупроводникового материала, например кремния. В пластине создаются области с p- и n- типами проводимости (рис. 2). В качестве методов создания этих областей используется, например, метод диффузии примесей или метод наращивания одного полупроводника на другой. Затем изготавливаются нижний и верхний электроконтакты (на рисунке электроды заштрихованы), причем нижний контакт - сплошной, а верхний выполняется в виде гребенчатой структуры (тонкие полосы, соединенные относительно широкой токосборной шиной).

Основным материалом для получения солнечных элементов является кремний. Технология получения полупроводникового кремния и фотоэлементов на его основе базируется на методах, разработанных в микроэлектронике - наиболее развитой промышленной технологии. Кремний, по-видимому, вообще один из самых изученных материалов в природе, к тому же второй по распространенности после кислорода. Если учесть, что первые солнечные элементы были изготовлены из кремния около сорока лет назад, то естественно, что этот материал играет первую скрипку в программах фотоэлектрической солнечной энергетики. Фотоэлементы из монокристаллического кремния сочетают достоинства использования относительно дешевого полупроводникового материала с высокими параметрами получаемых на его основе приборов.

До недавнего времени солнечные батареи наземного применения, так же как и космического, изготавливали на основе относительно дорогого монокристаллического кремния. Снижение стоимости исходного кремния, разработка высокопроизводительных методов изготовления пластин из слитков и прогрессивных технологий изготовления солнечных элементов позволили в несколько раз снизить стоимость наземных солнечных батарей на их основе. Основными направлениями работ по дальнейшему снижению стоимости "солнечной" электроэнергии являются: получение элементов на основе дешевого, в том числе ленточного, поликристаллического кремния; разработка дешевых тонкопленочных элементов на основе аморфного кремния и других полупроводниковых материалов; осуществление преобразования концентрированного солнечного излучения с помощью высокоэффективных элементов на основе кремния и относительно нового полупроводникового материала алюминий-галлий-мышьяк.

На рисунке 3 показаны две принципиальные схемы фотоэлектрических установок с концентраторами солнечного излучения в виде зеркал (вверху) и линз Френеля (внизу). Линза Френеля представляет собой выполненную из оргстекла пластину толщиной 1 - 3 мм, одна сторона которой является плоской, а на другой образован профиль в виде концентрических колец, повторяющий профиль выпуклой линзы. Линзы Френеля существенно дешевле обычных выпуклых линз и обеспечивают при этом степень концентрирования в 2 - 3 тысячи "солнц".

В последние годы в мире достигнут значительный прогресс в области разработки кремниевых солнечных элементов, работающих при концентрированном солнечном облучении. Созданы кремниевые элементы с КПД > 25% в условиях облучения на поверхности Земли при степени концентрирования 20 - 50 "солнц". Значительно большие степени концентрирования допускают фотоэлементы на основе полупроводникового материала алюминий-галлий-мышьяк, впервые созданные в Физико-техническом институте им. А.Ф. Иоффе в 1969 году. В таких солнечных элементах достигаются значения КПД > 25% при степени концентрирования до 1000 крат. Несмотря на большую стоимость таких элементов, их вклад в стоимость получаемой электроэнергии не оказывается определяющим при высоких степенях концентрирования солнечного излучения вследствие существенного (до 1000 раз) снижения их площади. Ситуация, при которой стоимость фотоэлементов не дает существенного вклада в общую стоимость солнечной энергоустановки, делает оправданным усложнение и удорожание фотоэлемента, если это обеспечивает увеличение КПД. Этим объясняется внимание, уделяемое в настоящее время разработкам каскадных солнечных элементов, которые позволяют достичь существенного увеличения КПД. В каскадном солнечном элементе солнечный спектр расщепляется на две (или более) части, например, видимую и инфракрасную, каждая из которых преобразуется с помощью фотоэлементов, выполненных на основе различных материалов. В этом случае снижаются потери энергии квантов солнечного излучения. Например, в двухэлементных каскадах теоретическое значение КПД превышает 40%.

ЗАКЛЮЧЕНИЕ

Из сказанного выше следует вывод о перспективности фотоэлектрической солнечной энергетики. Солнечное излучение является практически неисчерпаемым источником энергии, оно поступает во все уголки Земли, находится "под рукой" у любого потребителя и является экологически чистым доступным источником энергии.

Недостатком солнечного излучения как источника энергии является неравномерность его поступления на земную поверхность, определяемая суточной и сезонной цикличностью, а также погодными условиями. Поэтому весьма важной является проблема аккумулирования электроэнергии, вырабатываемой с помощью солнечных энергоустановок. В настоящее время эта проблема решается в основном путем использования обычных химических накопителей - аккумуляторов. Одним из перспективных способов аккумулирования является использование электроэнергии для электролиза воды на водород и кислород с последующим хранением и использованием водорода в качестве экологически чистого топлива, так как при сгорании водорода образуются только пары воды.

Крупномасштабное развитие фотоэнергетики даст огромный толчок развитию районов Земли с высоким среднегодовым поступлением солнечного излучения. Это касается в первую очередь пустынных и засушливых районов, которые с "приходом" солнечной электроэнергии станут районами, пригодными для активного земледелия - житницами Земли. Значит ли это, что усилия специалистов надо сосредоточить только на разработке фотоэлектрических преобразователей и решении непосредственно связанных с ними проблем? Конечно, нет. Нельзя развивать какое-то одно направление за счет подавления других направлений. Это же касается и электроэнергетики: ее нельзя строить, базируясь только на одном виде ресурсов. Она должна основываться на многих источниках: солнечных, ветровых, атомных и, конечно, на традиционных, ископаемых источниках. Это позволит найти оптимальные пути их взаимодействия, постепенно переходя к совершенной, экологически чистой и надежной энергетике будущего.

ЛИТЕРАТУРА

  1. Васильев A.M., Ландсман А.П. Полупроводниковые фотопреобразователи. М.: Сов. радио, 1971.
  2. Алферов Ж.И. Фотоэлектрическая солнечная энергетика/В сб.: Будущее науки. М.: Знание, 1978. С. 92-101.
  3. Колтун М.М. Оптика и метрология солнечных элементов. М.: Наука, 1985.
  4. Андреев В.М., Грилихес В.А., Румянцев В.Д. Фотоэлектрическое преобразование концентрированного солнечного излучения. Л.: Наука, 1989.
  5. Колтун М.М. Солнечные элементы. М.: Наука, 1987.
  6. Грилихес В.А., Орлов П.П., Попов Л.Б. Солнечная энергия и космические полеты. М.: Наука, 1984.

Быстрый рост энергопотребления приводит к ограниченности ископаемых энергетических ресурсов. Все труднее сохранить высокий темп развития энергетики путем использования традиционных источников энергии. Тема моей работы «Фотоэлектрические преобразования солнечной энергии» наиболее актуальна в настоящее время.

В реферате я описал методы преобразования солнечной энергии, которые могут обеспечить бурно растущие потребности в энергии в течение многих тысяч лет. Электроэнергия является наиболее удобным для использования и передачи видом энергии, так как Солнечное излучение является практически неисчерпаемым источником энергии.

По моему мнению, крупномасштабное развитие фотоэнергии даст огромный толчок развитию районов Земли с высоким среднегодовым поступлением солнечного излучения.

Рецензия

В реферате «Фотоэлектрические преобразования солнечной энергии» Сергей раскрыл выбранную тему полно. В данной работе рассмотрены актуальные вопросы преобразования солнечной энергии: прямой тепловой нагрев и фотоэлектрический преобразования.

Раскрывая тему Загатин С. опирается на работы А.Ф. Иоффе. В своей работе он рассматривает применение полупроводниковых фотоэлементов в солнечной энергетике, историю использования солнечных батареек, а так же процесс возникновения фотоЭДС.

Работа Сергея имеет логическую целостность, объем частей реферата выдержан. Изложение материала научно и интересно, поясняется рисунками. Имеется личностная оценка исследуемого вопроса.

При подготовке к работе над рефератом использовано достаточное количество литературы.

Считаю возможным оценить проделанную Загатиным С. работу

на «5».

Руководитель

Эффективное преобразование бесплатных лучей солнца в энергию, которую можно использовать для электроснабжения жилья и иных объектов, – заветная мечта многих апологетов зеленой энергетики.

Но принцип работы солнечной батареи, и ее КПД таковы, что о высокой эффективности таких систем пока говорить не приходится. Было бы неплохо обзавестись собственным дополнительным источником электроэнергии. Не так ли? Тем более что уже сегодня и в России с помощью гелиопанелей “дармовой” электроэнергией успешно снабжается немалое количество частных домохозяйств. Вы все еще не знаете с чего начать?

Ниже мы расскажем вам об устройстве и принципах работы солнечной панели, вы узнаете, от чего зависит эффективность гелиосистемы. А размещенные в статье видеоролики помогут собственноручно собрать солнечную панель из фотоэлементов.

В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.

По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.

Галерея изображений

Максимум отдачи от солнечной панели можно будет получить, только зная, как она работает, из каких компонентов и узлов состоит и как все это правильно подключается

Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.

Рис.9. Солнечный элемент как пример фотоэлектрического преобразования

Фотопроводящие преобразователи

Эти преобразователи превращают изменение измеряемой величины в изменение сопротивления используемого материала (рис.8). Несмотря на то что используемые материалы являются полупроводниковыми, фотопроводящие преобразователи не всегда являются полупроводниковыми приборами, поскольку они не имеют переходов между различными типами полупроводников. Такие преобразователи называются пассивными, т.е. нуждаются во внешнем питании. Зачастую их название характеризует тип используемого преобразования, например светочувствительные резисторы.

Сопротивление материала является функцией плотности основных носителей заряда, и так как плотность увеличивается с возрастанием интенсивности излучения, то проводимость возрастает. Поскольку проводимость обратно пропорциональна сопротивлению, можно заключить, что сопротивление является обратной функцией интенсивности облучения. Значение сопротивления при полном облучении составляет в общем случае 100- 200 Ом, а в полной темноте это сопротивление равняется мегаомам. В конструкции зависящих от света резисторов чаще всего используются такие материалы, как сульфид кадмия или селенид кадмия.


Солнечные элементы

Солнечные элементы представляют собой фотоэлектрические преобразователи, которые превращают излучаемую электромагнитную энергию в электрическую, т.е. изменение измеряемого значения излучения преобразуется в изменение выходного напряжения (рис.9).

Конструкция преобразователя включает в себя слой фоточувcтвительного высокоомного материала, размещенного между двумя проводящими электродами. Один из электродов выполнен из прозрачного материала, через который проходит излучение и попадает на фоточувствительный материал. При полном освещении один элемент вырабатывает выходное напряжение между электродами около 0,5 В.

В качестве фотоэлектрического слоя (Рис.9) как правило, используют полупроводниковые вентильные фотоэлементы (фотоэлементы с запирающим слоем). Смотри: Конструкции вентильных фотоэлементов

Одним из самых важных параметров фотоэлемента, который используется в качестве источника электрической энергии, является коэффициент полезного действия (КПД). КПД солнечного элемента это отношение максимальной мощности электрического тока, который можно получить от фотоэлемента, к мощности светового излучения, падающего на фотоэлемент. КПД будет тем больше, чем большая часть спектра светового излучения участвует в генерации носителей тока. Одним из путей повышения КПД солнечных батарей есть создание фотоэлементов с максимально широкой спектральной характеристикой. Изготавливаемые из кремния фотоэлементы имеют КПД до 12%. Фотоэлементы на основе соединений арсенида галлия имеют КПД до 20%.

gastroguru © 2017