Логарифмические уравнения и неравенства log корень. Неравенства. Логарифмические неравенства. Решение логарифмических неравенств

Логарифмические неравенства

На предыдущих уроках мы с вами познакомились с логарифмическими уравнениями и теперь знаем, что это такое и как их решать. А сегодняшний урок будет посвящен изучению логарифмических неравенств. Что же это за такие неравенства и в чем разница между решением логарифмического уравнения и неравенства?

Логарифмические неравенства - это неравенства, которые имеют переменную, стоящую под знаком логарифма или в его основании.

Или же, можно еще сказать, что логарифмическое неравенство – это такое неравенство, в котором его неизвестная величина, как и в логарифмическом уравнении, будет стоять под знаком логарифма.

Простейшие логарифмические неравенства имеют такой вид:

где f(x) и g(x) являются некоторыми выражениями, которые зависят от x.

Давайте это рассмотрим на таком примере: f(x)=1+2x+x2, g(x)=3x−1.

Решение логарифмических неравенств

Перед решением логарифмических неравенств, стоит отметить, что они при решении имеют сходство с показательными неравенствами, а именно:

Во-первых, при переходе от логарифмов к выражениям, стоящим под знаком логарифма, нам также необходимо сравнить основание логарифма с единицей;

Во-вторых, решая логарифмическое неравенство, используя замену переменных, нам необходимо решать неравенства относительно замены до того момента, пока мы не получим простейшее неравенство.

Но это мы с вами рассмотрели сходные моменты решения логарифмических неравенств. А сейчас обратим внимание на довольно таки существенное отличие. Нам с вами известно, что логарифмическая функция обладает ограниченной областью определения, поэтому переходя от логарифмов к выражениям, стоящим под знаком логарифма, нужно брать в расчет область допустимых значений (ОДЗ).

То есть, следует учитывать, что решая логарифмическое уравнение мы с вами, можем сначала находить корни уравнения, а потом делать проверку этого решения. А вот решить логарифмическое неравенство так не получится, поскольку переходя от логарифмов к выражениям, стоящим под знаком логарифма, необходимо будет записывать ОДЗ неравенства.

Вдобавок стоит запомнить, что теория неравенств состоит из действительных чисел, которыми являются положительные и отрицательные числа, а также и число 0.

Например, когда число «а» является положительным, то необходимо использовать такую запись: a >0. В этом случае, как сумма, так и произведение таких этих чисел также будут положительными.

Основным принципом решения неравенства является его замена на более простое неравенство, но главное, чтобы оно было равносильно данному. Дальше, также мы получили неравенство и снова его заменили на то, которое имеет более простой вид и т.д.

Решая неравенства с переменной нужно находить все его решения. Если два неравенства имеют одну переменную х, то такие неравенства равносильны, при условии, что их решения совпадают.

Выполняя задания на решение логарифмических неравенств, необходимо запомнить, что когда a > 1, то логарифмическая функция возрастает, а когда 0 < a < 1, то такая функция имеет свойство убывать. Эти свойства вам будут необходимы при решении логарифмических неравенств, поэтому вы их должны хорошо знать и помнить.

Способы решения логарифмических неравенств

Сейчас рассмотрим некоторые способы, которые имеют место при решении логарифмических неравенств. Для лучшего понимания и усвоения, попытаемся в них разобраться на конкретных примерах.

Нам с вами известно, что простейшее логарифмическое неравенство имеет такой вид:

В этом неравенстве V – является одним из таких знаков неравенства, как: <,>, ≤ или ≥.

Когда основание данного логарифма больше единицы (a>1), осуществляя переход от логарифмов к выражениям, стоящим под знаком логарифма, то в этом варианте знак неравенства сохраняется, и неравенство будет иметь такой вид:

что равносильно такой вот системе:


В случае же, когда основание логарифма больше нуля и меньше единицы (0

Это равносильно данной системе:


Посмотрим еще примеры решения простейших логарифмических неравенств, приведенных на картинке ниже:



Решение примеров

Задание. Давайте попробуем решить такое вот неравенство:


Решение области допустимых значений.


Теперь попробуем умножить его правую часть на:

Смотрим, что у нас получится:



Теперь, давайте с вами перейдем к преобразованию подлогарифмических выражений. В связи с тем, что основание логарифма 0< 1/4 <1, то от сюда следует, что знак неравенства изменится на противоположный:

3x - 8 > 16;
3x > 24;
х > 8.

А из этого следует, что интервал, который мы получили, целиком и полностью принадлежит ОДЗ и является решением такого неравенства.

Вот какой ответ у нас получился:


Что необходимо для решения логарифмических неравенств?

А теперь давайте попробуем проанализировать, что нам необходимо для успешного решения логарифмических неравенств?

Во-первых, сосредоточить все свое внимание и постараться не допускать ошибок при выполнении преобразований, которые даны в этом неравенстве. Также, следует запомнить, что при решении таких неравенств нужно не допускать расширений и сужений ОДЗ неравенства, которые могут привести к потере или приобретению посторонних решений.

Во-вторых, при решении логарифмических неравенств необходимо научиться мыслить логически и понимать разницу между такими понятиями, как система неравенств и совокупность неравенств, чтобы вы без проблем смогли осуществлять отбор решений неравенства, при этом руководствуясь его ОДЗ.

В-третьих, для успешного решения таких неравенств каждый из вас должен отлично знать все свойства элементарных функций и четко понимать их смысл. К таким функциям относятся не только логарифмические, но и рациональные, степенные, тригонометрические и т.д., одним словом, все те, которые вы изучали на протяжении школьного обучения алгебры.

Как видите, изучив тему о логарифмических неравенствах, в решении этих неравенств нет ничего сложного при условии, если вы будете внимательны и настойчивы в достижении поставленных целей. Чтобы в решении неравенств не возникало никаких проблем, нужно как можно больше тренироваться, решая различные задания и при этом запоминать основные способы решения таких неравенств и их систем. При неудачных решениях логарифмических неравенств, следует внимательно проанализировать свои ошибки, чтобы в будущем не возвращаться к ним снова.

Домашнее задание

Для лучшего усвоения темы и закрепления пройденного материала, решите следующие неравенства:


Логарифмическим уравнениям и неравенствам в вариантах ЕГЭ по математике посвящена задача C3 . Научиться решать задания C3 из ЕГЭ по математике должен каждый ученик, если он хочет сдать предстоящий экзамен на «хорошо» или «отлично». В данной статье представлен краткий обзор часто встречающихся логарифмических уравнений и неравенств, а также основных методов их решения.

Итак, разберем сегодня несколько примеров логарифмических уравнений и неравенств , которые предлагались учащимся в вариантах ЕГЭ по математике прошлых лет. Но начнет с краткого изложение основных теоретических моментов, которые нам понадобятся для их решения.

Логарифмическая функция

Определение

Функцию вида

0,\, a\ne 1 \]" title="Rendered by QuickLaTeX.com">

называют логарифмической функцией .

Основные свойства

Основные свойства логарифмической функции y = log a x :

Графиком логарифмической функции является логарифмическая кривая :


Свойства логарифмов

Логарифм произведения двух положительных чисел равен сумме логарифмов этих чисел:

Title="Rendered by QuickLaTeX.com">

Логарифм частного двух положительных чисел равен разности логарифмов этих чисел:

Title="Rendered by QuickLaTeX.com">

Если a и b a ≠ 1, то для любого числа r справедливо равенство :

Title="Rendered by QuickLaTeX.com">

Равенство log a t = log a s , где a > 0, a ≠ 1, t > 0, s > 0, справедливо тогда и только тогда, когда t = s.

Если a , b , c — положительные числа, причем a и c отличны от единицы, то имеет место равенство (формула перехода к новому основанию логарифма ):

Title="Rendered by QuickLaTeX.com">

Теорема 1. Если f (x ) > 0 и g (x ) > 0, то логарифмическое уравнение log a f (x ) = log a g (x ) (где a > 0, a ≠ 1) равносильно уравнению f (x ) = g (x ).

Решение логарифмических уравнений и неравенств

Пример 1. Решите уравнение:

Решение. В область допустимых значений входят только те x , при которых выражение, находящееся под знаком логарифма, больше нуля. Эти значения определяются следующей системой неравенств:

Title="Rendered by QuickLaTeX.com">

С учетом того, что

Title="Rendered by QuickLaTeX.com">

получаем промежуток, определяющий область допустимых значений данного логарифмического уравнения:

На основании теоремы 1, все условия которой здесь выполнены, переходим к следующему равносильному квадратичному уравнению:

В область допустимых значений входит только первый корень.

Ответ: x = 7.

Пример 2. Решите уравнение:

Решение. Область допустимых значений уравнения определяется системой неравенств:

ql-right-eqno">

Решение. Область допустимых значений уравнения определяется здесь легко: x > 0.

Используем подстановку:

Уравнение принимает вид:

Обратная подстановка:

Оба ответа входят в область допустимых значений уравнения, поскольку являются положительными числами.

Пример 4. Решите уравнение:

Решение. Вновь начнем решение с определения области допустимых значений уравнения. Она определяется следующей системой неравенств:

ql-right-eqno">

Основания логарифмов одинаковы, поэтому в области допустимых значений можно перейти к следующему квадратному уравнению:

Первый корень не входит в область допустимых значений уравнения, второй — входит.

Ответ: x = -1.

Пример 5. Решите уравнение:

Решение. Будем искать решения в промежутке x > 0, x ≠1. Преобразуем уравнение к равносильному:

Оба ответа входят в область допустимых значений уравнения.

Пример 6. Решите уравнение:

Решение. Система неравенств, определяющая область допустимых значений уравнения, имеет на этот раз вид:

Title="Rendered by QuickLaTeX.com">

Используя свойства логарифма, преобразуем уравнение к равносильному в области допустимых значений уравнению:

Используя формулу перехода к новому основанию логарифма, получаем:

В область допустимых значений входит только один ответ: x = 4.

Перейдем теперь к логарифмическим неравенствам . Это как раз то, с чем вам придется иметь дело на ЕГЭ по математике. Для решения дальнейших примеров нам потребуется следующая теорема:

Теорема 2. Если f (x ) > 0 и g (x ) > 0, то:
при a > 1 логарифмическое неравенство log a f (x ) > log a g (x ) равносильно неравенству того же смысла: f (x ) > g (x );
при 0 < a < 1 логарифмическое неравенство log a f (x ) > log a g (x ) равносильно неравенству противоположного смысла: f (x ) < g (x ).

Пример 7. Решите неравенство:

Решение. Начнем с определения области допустимых значений неравенства. Выражение, стоящее под знаком логарифмической функции, должно принимать только положительные значения. Это значит, что искомая область допустимых значений определяется следующей системой неравенств:

Title="Rendered by QuickLaTeX.com">

Так как в основании логарифма стоит число, меньшее единицы, соответствующая логарифмическая функция будет убывающей, а потому равносильным по теореме 2 будет переход к следующему квадратичному неравенству:

Окончательно, с учетом области допустимых значений получаем ответ:

Пример 8. Решите неравенство:

Решение. Вновь начнем с определения области допустимых значений:

Title="Rendered by QuickLaTeX.com">

На множестве допустимых значений неравенства проводим равносильные преобразования:

После сокращения и перехода к равносильному по теореме 2 неравенству получаем:

С учетом области допустимых значений получаем окончательный ответ:

Пример 9. Решите логарифмическое неравенство:

Решение. Область допустимых значений неравенства определяется следующей системой:

Title="Rendered by QuickLaTeX.com">

Видно, что в области допустимых значений выражение, стоящее в основании логарифма, всегда больше единицы, а потому равносильным по теореме 2 будет переход к следующему неравенству:

С учетом области допустимых значений получаем окончательный ответ:

Пример 10. Решите неравенство:

Решение.

Область допустимых значений неравенства определяется системой неравенств:

Title="Rendered by QuickLaTeX.com">

I способ. Воспользуемся формулой перехода к новому основанию логарифма и перейдем к равносильному в области допустимых значений неравенству.

При изучении логарифмической функции мы рассматривали в основном неравенства вида
log а х < b и log а х ≥ b. Рассмотрим решение более сложных логарифмических неравенств. Обычным способом решения таких неравенств является переход от данного неравенства к более простому неравенству или системе неравенств, которая имеет то же самое множество решений.

Решить неравенство lg (х + 1) ≤ 2 (1).

Решение .

1) Правая часть рассматриваемого неравенства смысл имеет при всех значенияхх, а левая часть – при х + 1 > 0, т.е. при х > -1.

2) Промежуток х > -1 называют областью определения неравенства (1). Логарифмическая функция с основанием 10 является возрастающей, следовательно, при условии х + 1 > 0 неравенство (1) выполняется, если х + 1 ≤ 100 (так как 2 = lg 100). Таким образом, неравенство (1) и система неравенств

{х > -1, (2)
{х + 1 ≤ 100,

равносильны, иными словами, множество решений неравенства (1) и системы неравенств (2) одно и то же.

3) Решая систему (2), находим -1 < х ≤ 99.

Ответ. -1 < х ≤ 99.

Решить неравенство log 2 (х – 3) + log 2 (х – 2) ≤ 1 (3).

Решение.

1) Областью определения рассматриваемой логарифмической функции является множество положительных значений аргумента, поэтому левая часть неравенства смысл имеет при х – 3 > 0 и х – 2 > 0.

Следовательно, областью определения этого неравенства является промежуток х > 3.

2) По свойствам логарифма неравенство (3) при х > 3 равносильно неравенству log 2 (х – 3)(х – 2) ≤ log 2 (4).

3) Логарифмическая функция с основанием 2 является возрастающей. Поэтому при х > 3 неравенство (4) выполняется, если (х – 3)(х – 2) ≤ 2.

4) Таким образом, исходное неравенство (3) равносильно системе неравенств

{(х – 3)(х – 2) ≤ 2,
{х > 3.

Решая первое неравенство этой системы, получаем х 2 – 5х + 4 ≤ 0, откуда 1 ≤ х ≤ 4. Совмещая этот отрезок с промежутком х > 3, получаем 3 < х ≤ 4.

Ответ. 3 < х ≤ 4.

Решить неравенство log 1/2 (х 2 + 2х – 8) ≥ -4. (5)

Решение.

1) Область определения неравенства находим из условия х 2 + 2х – 8 > 0.

2) Неравенство (5) можно записать в виде:

log 1/2 (х 2 + 2х – 8) ≥ log 1/2 16.

3) Так как логарифмическая функция с основанием ½ убывающая, то для всех х из всей области определения неравенства получаем:

х 2 + 2х – 8 ≤ 16.

Таким образом, исходное равенство (5) равносильно системе неравенств

{х 2 + 2х – 8 > 0, или {х 2 + 2х – 8 > 0,
{х 2 + 2х – 8 ≤ 16, {х 2 + 2х – 24 ≤ 0.

Решая первое квадратное неравенство, получаем х < -4, х > 2. Решая второе квадратное неравенство, получаем -6 ≤ х ≤ 4. Следовательно, оба неравенства системы выполняются одновременно при -6 ≤ х < -4 и при 2 < х ≤ 4.

Ответ. -6 ≤ х < -4; 2 < х ≤ 4.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Среди всего многообразия логарифмических неравенств отдельно изучают неравенства с переменным основанием. Они решаются по специальной формуле, которую почему-то редко рассказывают в школе:

log k (x ) f (x ) ∨ log k (x ) g (x ) ⇒ (f (x ) − g (x )) · (k (x ) − 1) ∨ 0

Вместо галки «∨» можно поставить любой знак неравенства: больше или меньше. Главное, чтобы в обоих неравенствах знаки были одинаковыми.

Так мы избавляемся от логарифмов и сводим задачу к рациональному неравенству. Последнее решается намного проще, но при отбрасывании логарифмов могут возникнуть лишние корни. Чтобы их отсечь, достаточно найти область допустимых значений. Если вы забыли ОДЗ логарифма, настоятельно рекомендую повторить - см. «Что такое логарифм ».

Все, что связано с областью допустимых значений, надо выписать и решить отдельно:

f (x ) > 0; g (x ) > 0; k (x ) > 0; k (x ) ≠ 1.

Эти четыре неравенства составляют систему и должны выполняться одновременно. Когда область допустимых значений найдена, остается пересечь ее с решением рационального неравенства - и ответ готов.

Задача. Решите неравенство:

Для начала выпишем ОДЗ логарифма:

Первые два неравенства выполняются автоматически, а последнее придется расписать. Поскольку квадрат числа равен нулю тогда и только тогда, когда само число равно нулю, имеем:

x 2 + 1 ≠ 1;
x 2 ≠ 0;
x ≠ 0.

Получается, что ОДЗ логарифма - все числа, кроме нуля: x ∈ (−∞ 0)∪(0; +∞). Теперь решаем основное неравенство:

Выполняем переход от логарифмического неравенства к рациональному. В исходном неравенстве стоит знак «меньше», значит полученное неравенство тоже должно быть со знаком «меньше». Имеем:

(10 − (x 2 + 1)) · (x 2 + 1 − 1) < 0;
(9 − x 2) · x 2 < 0;
(3 − x ) · (3 + x ) · x 2 < 0.

Нули этого выражения: x = 3; x = −3; x = 0. Причем x = 0 - корень второй кратности, значит при переходе через него знак функции не меняется. Имеем:

Получаем x ∈ (−∞ −3)∪(3; +∞). Данное множество полностью содержится в ОДЗ логарифма, значит это и есть ответ.

Преобразование логарифмических неравенств

Часто исходное неравенство отличается от приведенного выше. Это легко исправить по стандартным правилам работы с логарифмами - см. «Основные свойства логарифмов ». А именно:

  1. Любое число представимо в виде логарифма с заданным основанием;
  2. Сумму и разность логарифмов с одинаковыми основаниями можно заменить одним логарифмом.

Отдельно хочу напомнить про область допустимых значений. Поскольку в исходном неравенстве может быть несколько логарифмов, требуется найти ОДЗ каждого из них. Таким образом, общая схема решения логарифмических неравенств следующая:

  1. Найти ОДЗ каждого логарифма, входящего в неравенство;
  2. Свести неравенство к стандартному по формулам сложения и вычитания логарифмов;
  3. Решить полученное неравенство по схеме, приведенной выше.

Задача. Решите неравенство:

Найдем область определения (ОДЗ) первого логарифма:

Решаем методом интервалов. Находим нули числителя:

3x − 2 = 0;
x = 2/3.

Затем - нули знаменателя:

x − 1 = 0;
x = 1.

Отмечаем нули и знаки на координатной стреле:

Получаем x ∈ (−∞ 2/3)∪(1; +∞). У второго логарифма ОДЗ будет таким же. Не верите - можете проверить. Теперь преобразуем второй логарифм так, чтобы в основании стояла двойка:

Как видите, тройки в основании и перед логарифмом сократились. Получили два логарифма с одинаковым основанием. Складываем их:

log 2 (x − 1) 2 < 2;
log 2 (x − 1) 2 < log 2 2 2 .

Получили стандартное логарифмическое неравенство. Избавляемся от логарифмов по формуле. Поскольку в исходном неравенстве стоит знак «меньше», полученное рациональное выражение тоже должно быть меньше нуля. Имеем:

(f (x ) − g (x )) · (k (x ) − 1) < 0;
((x − 1) 2 − 2 2)(2 − 1) < 0;
x 2 − 2x + 1 − 4 < 0;
x 2 − 2x − 3 < 0;
(x − 3)(x + 1) < 0;
x ∈ (−1; 3).

Получили два множества:

  1. ОДЗ: x ∈ (−∞ 2/3)∪(1; +∞);
  2. Кандидат на ответ: x ∈ (−1; 3).

Осталось пересечь эти множества - получим настоящий ответ:

Нас интересует пересечение множеств, поэтому выбираем интервалы, закрашенные на обоих стрелах. Получаем x ∈ (−1; 2/3)∪(1; 3) - все точки выколоты.

При решении логарифмических неравенств за основу берем свойства логарифмических функций . А именно то, что функция у =log a x при а > 1 будет монотонно возрастающей, а при 0 < а < 1 - монотонно убывающей.

Проанализируем преобразования необходимые для решения неравенства

log 1/5 (x - l) > - 2.

Первоначально требуется уравнять основания логарифмов , в указанном случае показать правую часть в виде логарифма с необходимым основанием . Преобразуем -2=-2 log 1/5 1/5= log 1/5 1/5 -2 = log 1/5 25 , далее укажем выбранное неравенство в виде:

log 1/5 (x- l) > log 1/5 25.

Функция у = log 1/5 x будет монотонно убывающей. Получается, большему значению этой функции соответствует меньшее значение аргумента. И соответственно имеем, х —1 < 25. К указанному неравенству требуется добавить еще неравенство х - 1 > 0, соответствующее тому факту, что под знаком логарифма может быть только положительная величина. Получается, что данное неравенство идентично системе двух линейных неравенств . Учитывая, что основание логарифма меньше единицы, в идентичной системе знак неравенства меняется на противоположный:

Решив которое видим, что:

1 < х < 26.

Имеет большое значение не забыть условие х- 1 > 0, иначе получится не правильный вывод: х < 26. Тогда бы в эти «решения» входило бы и значение х = 0, при котором левая часть первоначального неравенства не существует.

gastroguru © 2017