Исследование особенностей фрактальных моделей для практического применения. Исследование мира фракталов Фракталы в реальном мире объект исследования

Мартынов Даниил

Руководитель проекта:

Мартынова Людмила Юрьевна

Учреждение:

МОУ "Криушинская СОШ"

В процессе исследовательской работы по математике "Фракталы вокруг нас" учеником 8 класса была поставлена цель показать, что математика не бездушный предмет, она может выражать духовный мир человека и общества, путём создания своего собственного геометрического фрактала «Звезда ».


В исследовательской работе по математике "Фракталы вокруг нас" автор строит геометрический фрактал "Звезда" в рамках проекта и дает рекомендации по практическому применению созданного фрактала, пытается найти связь между фракталами и треугольниками Паскаля в процессе математического исследования.

В предложенном проекте по математике "Фракталы вокруг нас" автор приходит к умозаключению, что новые идеи фрактальной геометрии помогут изучить многие загадочные явления окружающей природы. Методы обработки изображений и распознавания образов, использующие новые понятия, дают возможность исследователям применить этот математический аппарат для количественного описания огромного количества природных объектов и структур.

Введение
1. Обоснование и построение геометрического фрактала "Звезда".
2. Нахождение связи между фракталами и треугольниками Паскаля.
3. Рекомендации по практическому применению созданного фрактала.
Заключение

Введение

Многие из моих одноклассников считают, что математика – точная и скучная наука, задачи, уравнения, графики, формулы…. Что здесь может быть интересного? Геометрия 21 века. Холодная, сложная, не интересная…


"Почему ее так называют? Одна из причин заключается в ее неспособности описать форму облака, горы, дерева или берега моря. Облака - это не сферы, горы - не конусы, линии берега - это не окружности, и кора не является гладкой, и молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности" Бенуа Мандельброт.

Своей исследовательской работой я постарался опровергнуть выше сказанное. Это стало возможно после открытия фракталов - самоподобных фигур, обладающих рядом интересных свойств, которые и позволили сравнивать фракталы с объектами природы.

Гипотеза – «Всё, что существует в реальном мире, является фракталом ».

Цель - показать, что математика не бездушный предмет, она может выражать духовный мир человека и общества, путём создания своего собственного геометрического фрактала «Звезда ».

Объект исследования - фракталы в математике и в реальном мире.

  1. Проанализировать и проработать литературу по теме исследования.
  2. Рассмотреть и изучить различные виды фракталов.
  3. Установить взаимосвязь между треугольником Паскаля, литературными произведениями.
  4. Придумать и создать собственный фрактал, составить программу для построения графического образа геометрического фрактала «Звезда ».
  5. Рассмотреть возможности практического применения созданного фрактала.

Актуальность заявленной темы определяется, в первую очередь, предметом исследования, в качестве которого выступает фрактальная геометрия.

Структура исследовательской работы включает в себя введение, две главы, заключение, список использованной литературы, приложения.

Во введении обоснована актуальность и новизна темы исследования, определены проблема, предмет, цель, задачи, этапы работы, теоретическая и практическая значимость работы.

В первой главе раскрывается вопрос об истории возникновения понятия фрактала, классификация фракталов, применение фракталов.

Во второй главе исследуется и доказывается, что созданная нами геометрическая фигура «Звезда » является фракталом, изменяя параметры созданного фрактала, мы получили целую галерею прекрасных орнаментов, которые могут быть использованы для практического применения: в производстве тканей, отделочных материалов, в валеологии.

Как был открыт фрактал

Математические формы, известные как фракталы, принадлежат гению выдающегося ученого Бенуа Мандельброта. Большую часть жизни он преподавал математику в Йельском университете США. В 1977 - 1982 годах Мандельброт опубликовал научные труды, посвященные изучению «фрактальной геометрии» или «геометрии природы», в которых разбивал на первый взгляд случайные математические формы на составные элементы, оказавшиеся при ближайшем рассмотрении повторяющимися, - что и доказывало наличие некого образца для копирования. Открытие Мандельброта возымело весомые последствия в развитии физики, астрономии и биологии.



Фракталы в природе

В природе фрактальными свойствами обладают многие объекты, например: кроны деревьев, цветная капуста, облака, кровеносная и альвеолярная системы человека и животных, кристаллы, снежинки, элементы которых выстраиваются в одну сложную структуру, побережья (фрактальная концепция позволила ученым измерить береговую линию Британских островов и другие, ранее неизмеримые, объекты).


Рассмотрим строение цветной капусты. Если разрезать один из цветков, очевидно, что в руках остаётся всё та же цветная капуста, только меньшего размера. Можно продолжать резать снова и снова, даже под микроскопом - однако все, что мы получим - это крошечные копии цветной капусты. В этом простейшем случае даже небольшая часть фрактала содержит информацию обо всей конечной структуре.

Фракталы в цифровой технике

Фрактальная геометрия внесла неоценимый вклад в разработку новых технологий в области цифровой музыки, а так же сделала возможной сжатие цифровых изображений. Существующие фрактальные алгоритмы сжатия изображения основаны на принципе хранения сжимающего изображения вместо самой цифровой картинки. Для сжимающего изображения основная картинка остаётся неподвижной точкой. Фирма «Microsoft» использовала один из вариантов данного алгоритма при издании своей энциклопедии, но по тем или иным причинам широкого распространения эта идея не получила.


В математической основе фрактальной графики лежит фрактальная геометрия, где в основу методов построения «изображений-наследников» помещён принцип наследования от исходных «объектов-родителей». Сами понятия фрактальной геометрии и фрактальной графики появилось всего около 30 лет назад, но уже прочно вошли в обиход компьютерных дизайнеров и математиков.

Базовыми понятиями фрактальной компьютерной графики являются:

  • Фрактальный треугольник - фрактальная фигура - фрактальный объект (иерархия в порядке убывания)
  • Фрактальная прямая
  • Фрактальная композиция
  • «Объект-родитель» и «Объект наследник»

Также как в векторной и трёхмерной графике, создание фрактальных изображений математически вычисляемо. Главное отличие от первых двух видов графики в том, что фрактальное изображение строится по уравнению или системе уравнений, - ничего кроме формулы в памяти компьютера для выполнения всех вычислений хранить не нужно, - и такая компактность математического аппарата позволила использование этой идеи в компьютерной графике. Просто изменяя коэффициенты уравнения, можно с лёгкостью получить совершенно иное фрактальное изображение - при помощи нескольких математических коэффициентов задаются поверхности и линии очень сложной формы, что позволяет реализовать такие приёмы композиции, как горизонтали и вертикали, симметрию и асимметрию, диагональные направления и многое другое.

Как построить фрактал?

Создатель фракталов выполняет роль художника, фотографа, скульптора, и ученого-изобретателя одновременно. Какие предстоят этапы работы сотворения рисунка «с нуля»?

  • задать форму рисунка математической формулой
  • исследовать сходимость процесса и варьировать его параметры
  • выбрать вид изображения
  • выбрать палитру цветов

Среди фрактальных графических редакторов и прочих графических программ можно выделить:

  • «Art Dabbler»
  • «Painter» (без компьютера ни один художник никогда не достигнет заложенных программистами возможностей лишь посредством с помощью карандаша и пера кисти)
  • «Adobe Photoshop» (но здесь изображение «с нуля» не создается, а, как правило, только обрабатывается)

Рассмотрим устройство произвольной фрактальной геометрической фигуры. В её центре находится простейший элемент - равносторонний треугольник, получивший одноимённое название: «фрактальный». На среднем отрезке сторон построим равносторонние треугольники со стороной, равной одной трети от стороны исходного фрактального треугольника. По тому же принципу строятся ещё более мелкие треугольники-наследники второго поколения - и так до бесконечности. Объект, который в результате получился, называется «фрактальной фигурой», из последовательностей которой получаем «фрактальную композицию».

Источник: http://www.iknowit.ru/

Фракталы и древние мандалы

Это мандала для привлечения денег. Утверджают, что красный цвет работает как денежный магнит. А витиеватые узоры вам ничего не напоминают? Мне они показались очень знакомыми и я занялась исследованием мандал в качестве фрактала.

В принципе, мандала — это геометрический символ сложной структуры, который интерпретируется как модель Вселенной, «карта космоса». Вот и первый признак фрактальности!

Их вышивают на ткани, рисуют на песке, выполняют цветными порошками и делают из металла, камня, дерева. Яркий и завораживающий вид, делает её красивым украшением полов, стен и потолков храмов в Индии. На древнем индийском языке «мандала» обозначает мистический круг взаимосвязи духовных и материальных энергий Вселенной или по-другому цветок жизни.

Мне хотелось написать обзор о фрактальных мандалах совсем небольшим, с минимумом абзацев, показав, что взаимосвязь явно существует. Однако, пытаясь найти осознать и связать информацию о фракталах и мандалах в единое целое, у меня было ощущение квантового скачка в неизвестное мне пространство.

Демонстрирую необъятность этой темы цитатой: ”Такие фрактальные композиции или мандалы могут использоваться как в виде картин, элементов дизайна жилого и рабочего помещения, носимых амулетов, в форме видеокассет, компьютерных программ…” В общем, тема для исследования фракталов просто огромнейшая.

Одно я могу сказать точно, мир гораздо разнообразнее и богаче, чем убогие представления нашего ума о нем.

Фрактальные морские животные


Мои догадки о фрактальных морских животных были не беспочвенны. Вот и первые представители. Осьминог - морское придонное животное из отряда головоногих.

Взглянув на эту фотографию, мне стало очевидно фрактальное строение его тела и присосок на всех восьми щупальцах этого животного. Присосок на щупальцах взрослого осьминога достигает до 2000.

Интересен то факт, что у осьминога три сердца: одно (главное) гонит голубую кровь по всему телу, а два других — жаберных — проталкивают кровь через жабры. Некоторые виды этих глубоководных фракталов ядовиты.

Приспосабливаясь и маскируясь под окружающую среду, осьминог обладает весьма полезной способностью изменять окраску.

Осьминогов считают самыми «умными» среди всех беспозвоночных. Узнают людей, привыкают к тем, кто их кормит. Интересно было бы посмотреть на осьминогов, которые легко поддаются дрессировке, имеют хорошую память и даже различают геометрические фигуры. Но век этих фрактальных животных недолог - максимум 4 года.

Человек использует чернила этого живого фрактала и других головоногих. Они пользуются спросом у художников за их стойкость и красивый коричневый тон. В средиземноморской кухне осьминог является источником витаминов B3, B12, калия, фосфора и селена. Но я думаю, что этих морских фракталов нужно уметь готовить, чтобы получать удовольствие от их употребления в виде пищи.

Кстати, нужно заметить, что осьминоги - хищники. Своими фрактальными щупальцами они удерживают жертву в виде моллюсков, ракообразных и рыбы. Жаль, если пищей этих морских фракталов становится вот такой красивый моллюск. По-моему, тоже типичный представитель фракталов морского царства.


Это родственник улиток, брюхоногий голожаберный моллюск Главк, он же Глаукус, он же Glaucus atlanticus, он же Glaucilla marginata. Это фрактал еще и необычен тем, что живет и передвигается под поверхностью воды, удерживаясь за счет поверхностного натяжения. Т.к. моллюск является гермафродитом, то после спаривания оба "партнера" откладывают яйца. Этот фрактал встречается во всех океанах тропического пояса.

Фракталы морского царства



Каждый из нас хотя бы раз в жизни держал в руках и с неподдельным детским интересом рассматривал морскую раковину.

Обычно раковины являются красивым сувениром, напоминающим о поездке на море. Когда смотришь на это спиралевидное образование беспозвоночных моллюсков, нет никаких сомнений в его фрактальной природе.

Мы, люди, чем-то напоминаем этих мягкотелых моллюсков, обитая в благоустроенных бетонных домах-фракталах, помещая и перемещая свое тело в быстрых автомобилях.


Еще одни типичнейшим представителем фрактального подводного мира является коралл.
В природе известно свыше 3500 разновидностей кораллов, в палитре которых различают до 350 цветовых оттенков.

Коралл - это материал скелета колонии коралловых полипов, тоже из семейства беспозвоночных. Их огромные скопления образуют целые коралловые рифы, фрактальный способ образования которых очевиден.

Коралл с полной уверенностью можно назвать фракталом из морского царства.

Он также используется человеком в виде сувенира или сырья для ювелирных изделий и украшений. Но повторить красоту и совершенство фрактальной природы очень сложно.

Почему-то не сомневаюсь, что в подводном мире также отыщется и множество фрактальных животных .

В очередной раз, исполняя ритуал на кухне с ножом и разделочной доской, а потом, опустив нож в холодную воду, я вся в слезах в очередной раз придумывала, как бороться со слезоточивым фракталом, который практически ежедневно появляется на моих глазах.

Принцип фрактальности тот же, что и у знаменитой матрешки - вложенность. Именно поэтому фрактальность замечается не сразу. К тому же, светлый однородный окрас и его природная способность вызывать неприятные ощущения не способствуют пристальному наблюдению за мирозданием и выявлению фрактальных математических закономерностей.

А вот салатный лук сиреневого цвета в силу своего окраса и отсутствия слезоточивых фитонцидов навел на размышления о природной фрактальности этого овоща. Конечно, фрактал он незамысловатый, обычные окружности разного диаметра, можно даже сказать примитивнейший фрактал. Но не мешало бы вспомнить, что шар считается идеальной геометрической фигурой в пределах нашей Вселенной.

О полезных свойствах лука в Интернете опубликовано немало статей, но как-то никто не пытался изучать этот природный экземпляр с точки зрения фрактальности. Я могу только констатировать факт полезности применения фрактала в виде лука на своей кухне.

P.S. А овощерезку для измельчения фрактала я уже приобрела. Теперь придется поразмышлять, насколько фрактален такой полезный овощ, как обычная белокачанная капуста. Тот же принцип вложенности.

Фракталы в народном творчестве


Мое внимание привлекла история всемирно известной игрушки «Матрешка». Присмотревшись внимательней, с уверенностью можно сказать, что эта игрушка-сувенир - типичный фрактал.

Принцип фрактальности очевиден, когда все фигурки деревянной игрушки выстроены в ряд, а не вложены друг в друга.

Мои небольшие исследования истории появления этого игрушечного фрактала на мировом рынке показали, что корни у этой красавицы - японские. Матрешка всегда считалась исконно русским сувениром. Но оказалось, что она прототип японской фигурки старика-мудреца Фукурума, привезенного когда-то в Москву из Японии.

Но именно российский игрушечный промысел принес этой японской фигурке мировую славу. Откуда возникла идея фрактальной вложенности игрушки, лично для меня, так и осталось загадкой. Скорей всего автор этой игрушки использовал принцип вложенности фигурок друг в друга. А самый простой способ вложения - это подобные фигурки разных размеров, а это уже - фрактал.


Не менее интересный объект исследования представляет собой роспись игрушки-фрактала. Это декоративная роспись - хохлома. Традиционные элементы хохломы - это травяные узоры из цветов, ягод и веток.

Снова все признаки фрактальности. Ведь один и тот же элемент можно повторять несколько раз в разных вариантах и пропорциях. В итоге получается народная фрактальная роспись.

И если новомодной росписью компьютерных мышек, крышек ноутбуков и телефонов никого уже не удивишь, то фрактальный тюнинг автомобиля в народном стиле - это что-то новое в автодизайне. Остается только удивляться проявлению мира фракталов в нашей жизни таким необычным образом в таких обычных для нас вещах.

Фракталы на кухне

Каждый раз, разбирая цветную капусту на небольшие соцветия для бланширования в кипящей воде, я ни разу не обращала внимания на явные признаки фрактальности, пока у меня в руках не оказался этот экземпляр.

Типичный представитель фрактала из растительного мира красовался на моем кухонном столе.

При всей моей любви к цветной капусте мне все время попадались экземпляры с однородной поверхностью без видимых признаков фрактальности, и даже большое число соцветий, вложенных друг в друга, не давали мне повода увидеть в этом полезном овоще фрактал.

Но поверхность именно этого экземпляра с явно выраженной фрактальной геометрией не оставляла ни малейшего сомнения во фрактальном происхождении этого вида капусты.

Очередной поход в гипермаркет только подтвердил фрактальный статус капусты. Среди огромного числа экзотических овощей красовался целый ящик с фракталами. Это была Романеску, или романская брокколи, цветная коралловая капуста.



Оказывается, дизайнеры и 3D-художники восторгаются ее экзотическими формами, похожими на фракталы.

Капустные почки нарастают по логарифмической спирали. Первые упоминания о капусте романеску пришли из Италии 16-го века.

А капуста броколли совсем не частая гостья в моем рационе, хотя по содержанию полезных веществ и микроэлементов она превосходит цветную капусту в разы. Но ее поверхность и форма настолько однородны, что мне никогда не приходило в голову увидеть в ней овощной фрактал.

Фракталы в квиллинге

Увидев ажурные поделки в технике квиллинг, меня никогда не покидало ощущение, что что-то они мне напоминают. Повторение одних и тех же элементов в разных размерах - конечно же, это принцип фрактальности.


Посмотрев очередной мастер-класс по квилингу, не осталось даже сомнений в фрактальности квиллинга. Ведь для изготовления различных элементов для поделок из квиллинга используется специальная линейка с окружностями разного диаметра. При всей красоте и неповторимости изделий, это - невероятно простая техника.

Почти все основные элементы для поделок в квиллинге делаются из бумаги. Чтобы запастись бумагой для квиллинга бесплатно, проведите дома ревизию своих книжных полок. Наверняка, там вы обнаружите пару-тройку ярких глянцевых журналов.

Инструменты для квиллинга просты и недороги. Все что вам необходимо для выполнения любительских работ в стиле квиллинг, вы можете найти среди своих домашних канцелярских принадлежностей.

А история квиллинга начинается в 18 веке в Европе. В эпоху Ренессанса монахи из французских и итальянских монастырей с помощью квиллинга украшали книжные обложки и даже не подозревали о фрактальности изобретенной ими техники бумагокручения. Девушки из высшего общества даже проходили курс по квиллингу в специальных школах. Вот так эта техника начала распространяться по странам и континентам.

Этот мастер-класс видео квиллинг по изготовлению роскошного оперения можно даже назвать "фракталы своими руками". С помощью фракталов из бумаги получаются чудесный эксклюзивные открытки-валентики и много разных других интересных вещей. Ведь фантазия, как и природа неисчерпаема.


Ни для кого не секрет, что японцы по жизни сильно ограничены в пространстве, в связи с чем, им приходится всячески изощряться в эффективном его использовании. Такеши Миякава показывает, как это можно делать одновременно эффективно и эстетично. Его фрактальный шкаф подтверждение тому, что использование фракталов в дизайне - это не только дань моде, но и гармоничное конструкторское решение в условиях ограниченного пространства.

Этот пример использования фракталов в реальной жизни, применительно к дизайну мебели показал мне, что фракталы реальны не только на бумаге в математических формулах и компьютерных программах.

И, похоже, что принцип фрактальности природа использует повсеместно. Только нужно присмотреться к ней внимательней, и она проявит себя во всем своем великолепном изобилии и бесконечности бытия.

Есть очень интересный сайт, посвящённый фракталам, с которого мы взяли часть информации: http://elementy.ru/posters/fractals/nature

Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? Существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны . От ветки, как и от ствола дерева, отходят отростки поменьше, от них — еще меньшие, и т. д., то есть ветка подобна всему дереву. Так же происходит и у

папоротника.

Похожим образом устроена и кровеносная система: от артерий отходят артериолы, а от них — мельчайшие капилляры, по которым кислород поступает в органы и ткани.

Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя . Это свойство объектов американский (правда, выросший во Франции) математик Бенуа Мандельброт назвал фрактальностью , а сами такие объекты — фракталами (от латинского fractus — изломанный).
С береговой линией, а точнее, с попыткой измерить ее длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы». Речь идет об эксперименте, который поставил Льюис Ричардсон ( Lewis Fry Richardson ) — весьма талантливый и эксцентричный математик, физик и метеоролог.

Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать всё новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона (Richardson effect).

В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо фрактальной живописи фракталы используются в теории информации для сжатия графических данных (здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла). Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими.

В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. А экономисты используют фракталы для описания кривых колебания курсов валют (это свойство было открыто Мандельбротом более 30 лет назад).

В природе фрактальными свойствами обладают многие объекты, например: кроны деревьев, цветная капуста, облака, кровеносная и альвеолярная системы человека и животных, кристаллы, снежинки, элементы которых выстраиваются в одну сложную структуру, побережья (фрактальная концепция позволила ученым измерить береговую линию Британских островов и другие, ранее неизмеримые, объекты)( http://www.liveinternet.ru/users/4293782/post163419491/)

.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Тема : Фракталы - особые объекты живого и неживого мира

Хабаровск ТОГУ 2015

  • Оглавление
  • фрактал геометрический фрактальный графика
  • История фракталов
  • Классификация фракталов
  • Геометрические фракталы
  • Алгебраические фракталы
  • Применение фракталов
  • Фракталы и мир вокруг нас
  • Фрактальная графика
  • Применение фракталов
  • Естественные науки
  • Радиотехника
  • Информатика
  • Экономика и финансы

История фракталов

Очень часто мы встречаемся с особыми объектами, но мало кто знает, что это и есть фракталы. Фракталы - уникальные объекты, порожденные непредсказуемыми движениями хаотического мира. Они встречаются как в малых объектах, например, клеточная мембрана, и огромных, таких как Солнечная система и Галактика. В повседневной жизни мы можем увидеть фракталы на рисунке обоев, на ткани, заставке рабочего стола на компьютере, а в природе - это растения, морские животные, природные явления.

Учёные, с древних времен, зачарованы фракталами, программисты и специалисты в области компьютерной графики также любят эти объекты. Открытие фракталов стало революцией в человеческом восприятии мира и открытием новой эстетики искусства и науки.

Так что же такое фракталы? Фрактал - геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре в целом.

Термин фрактал был предложен в 1975г. Бенуа Мандельбротом для обозначения нерегулярных, самоподобных структур, которыми он занимался. Рождением фрактальной геометрии является выход его книги “The Fractal Geometry of Nature” в 1977г. Его работы базировались на трудах ученых Пуанкаре, Фату, Жюлиа, Кантора и Хаусдорфа, работавших в 1875 ? 1925 годах в этой же области. Но удалось объединить их работы в единую систему только в наше время.

Понятие «фрактал» образовано от латинского «fractus» ? состоящий из фрагментов. Одно из определений звучит так: «Фракталом называется структура, состоящая из частей, которые, в каком?то смысле подобны целому».

Бенуа Мандельброт в своих работах привел яркие примеры применения фракталов для объяснения некоторых природных явлений. Он уделил большое внимание интересному свойству, которым обладают многие фракталы. Дело в том, что часто фрактал можно разбить на сколь угодно малые части так, что каждая часть окажется просто уменьшенной копией целого. Иначе говоря, если мы будем смотреть на фрактал в микроскоп, то с удивлением увидим ту же самую картину, что и без микроскопа. Это свойство самоподобия резко отличает фракталы от объектов классической геометрии.

Для современных учёных изучение фракталов? не просто новая область познания. Это открытие нового типа геометрии, которая описывает мир вокруг нас и которую можно увидеть не только в учебниках, но и в природе, и в безграничной Вселенной. В настоящее время Мандельброт и другие учёные расширили область фрактальной геометрии так, что она может быть применима практически ко всему в мире, от предсказания цен на рынке ценных бумаг до совершения новых открытий в теоретической физике.

Классификация фракталов

Существуют различные классификации фракталов.

Основной классификацией фракталов является разделение на геометрические и алгебраические.

Геометрические фракталы обладают точным самоподобием, а алгебраические - приближённым самоподобием.

Существует также разделение на природные и рукотворные фракталы.

К рукотворным относятся фракталы, которые были придуманы учёными, они при любом масштабе обладают фрактальными свойствами. На природные фракталы накладывается ограничение на область существования -- то есть максимальный и минимальный размер, при которых у объекта наблюдаются фрактальные свойства.

Самыми простыми фракталами являются геометрические фракталы.

Геометрические фракталы

Геометрические фракталы по-другому называют классическими, детерминированными или линейными. Они являются самыми наглядными, так как обладают так называемой жесткой самоподобностью, не изменяющейся при изменении масштаба. Это значит, что, независимо от того, насколько вы приближаете фрактал, вы видите всё тот же узор.

В двухмерном случае такие фракталы можно получить, задав некоторую ломаную, называемую генератором. За один шаг алгоритма каждый из отрезков данной ломаной (инициатора) заменяется на ломаную-генератор в соответствующем масштабе. В результате бесконечного повторения этой процедуры получается фрактальная кривая. Несмотря на кажущуюся сложность этой кривой, её форма определяется лишь формой генератора.

Наиболее известные геометрические фракталы: кривая Коха, кривая Минковского, кривая Леви, кривая дракона, салфетка и ковер Серпинского, пятиугольник Дюрера.

Построение некоторых геометрических фракталов

1). Кривая Коха.

Она была изобретена в 1904 году немецким математиком по имени Хельге фон Кох. Для её построения берется единичный отрезок, делится на три равные части и среднее звено заменяется равносторонним треугольником без этого звена. На следующем шаге повторяем операцию для каждого из четырёх получившихся отрезков. В результате бесконечного повторения данной процедуры получается фрактальная кривая.

2). Салфетка Серпинского.

В 1915 году польский математик Вацлав Серпинский придумал занимательный объект. Для его построения берётся сплошной равносторонний треугольник. На первом шаге из центра удаляется перевернутый равносторонний треугольник. На втором шаге удаляется три перевернутых треугольника из трёх оставшихся треугольников и т.д. По теории конца этому процессу не будет, и в треугольнике не останется живого места, но и на части он не распадется - получится объект, состоящий из одних только дырок.

3). Дракон Хартера-Хэйтуэя.

Дракон Хартера, также известный как дракон Хартера-Хейтуэя, впервые исследовали физикии NASA ? Джон Хейтуэй, Вильям Хартер и Брюс Бенкс. Он был описан в 1967 году Мартином Гарднером в колонке «Математические игры» журнала «Scientific American».

Каждый из отрезков прямой на следующем шаге заменяется на два отрезка, образующих боковые стороны равнобедренного прямоугольного треугольника, для которого исходный отрезок являлся бы гипотенузой. В результате отрезок как бы прогибается под прямым углом. Направление прогиба чередуется. Первый отрезок прогибается вправо (по ходу движения слева направо), второй - влево, третий - опять вправо и т.д.

Примеры геометрических фракталов

Кривая Коха Салфетка Серпинского

Дракон Хартера-Хэйтуэя

Вторая большая группа фракталов - алгебраические. Свое название они получили за то, что их строят на основе алгебраических формул.

Алгебраические фракталы

Сложные (алгебраические) фракталы невозможно создать без помощи компьютера. Для получения красочных результатов этот компьютер должен обладать мощным математическим сопроцессором и монитором с высоким разрешением. Свое название они получили за то, что их строят на основе алгебраических формул. В результате математической обработки данной формулы на экран выводится точка определенного цвета. Результатом оказывается странная фигура, в которой прямые линии переходят в кривые, появляются хотя и не без деформаций, эффекты самоподобия на различных масштабных уровнях. Практически каждая точка на экране компьютера как отдельный фрактал.

Наиболее известные алгебраические фракталы: множества Мандельброта и Жюлиа, бассейны Ньютона.

Алгебраические фракталы обладают приближенным самоподобием. Фактически, если вы увеличите маленькую область любого сложного фрактала, а затем проделаете то же самое с маленьким участком этой области, то эти два увеличения будут значительно отличаться друг от друга. Два изображения будут очень похожи в деталях, но они не будут полностью идентичными.

АЛГЕБРАИЧЕСКИЕ ФРАКТАЛЫ

Приближения множества Мандельброта

Фракталы находят всё большее и большее применение в науке. Основная причина в том, что они описывают реальный мир лучше, чем традиционная физика и математика.

Применение фракталов

1). Теория хаоса: фракталы всегда ассоциируются со словом хаос. Теория хаоса определяется как учение о сложных нелинейных динамических системах. Хаос - это отсутствие предсказуемости. Он возникает в динамических системах, когда для двух очень близких начальных значений система ведет себя совершенно по-разному. Пример хаотичной динамической системы - погода. Примерами подобных систем являются турбулентные потоки, биологические популяции, общество и его подсистемы: экономические, политические и другие социальные системы. Одной из центральных концепций в этой теории является невозможность точного предсказания состояния системы. Теория хаоса сосредотачивает внимание не на беспорядке системы (наследственной непредсказуемости системы), а на унаследованном ей порядке (общем в поведении похожих систем). Таким образом, наука о хаосе - это система представлений о различных формах порядка, где случайность становится организующим принципом.

2). Экономика: анализ рынка ценных бумаг.

3). Астрофизика: описание процессов кластеризации галактик во Вселенной.

4). Геология: изучение шероховатости минералов;

5). Картография: изучение форм береговых линий; изучение разветвленной сети речных русел.

6). Механика жидкостей и газов, физика поверхностей:

- динамика и турбулентность сложных потоков.

- моделирование языков пламени;

7). Биология и медицина:

- моделирование популяций животных и миграции птиц;

- моделирование эпидемий;

- анализ строения кровеносной системы;

- рассмотрение сложных поверхностей клеточных мембран;

- описание процессов внутри организма, например, биения сердца.

8). Фрактальные антенны: использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка на зданиях внешних антенн. Он вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, а затем присоединил к приёмнику. Оказалось, что такая антенна работает не хуже обычной. И хотя физические принципы работы такой антенны не изучены до сих пор, это не помешало Коэну основать собственную компанию и наладить их серийный выпуск.

9). Сжатие изображений: достоинства алгоритмов фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Другое преимущество фрактального сжатия в том, что при увеличении картинки, не наблюдается эффекта пикселизации (увеличения размеров точек до размеров, искажающих изображение). При фрактальном сжатии, после увеличения, картинка часто выглядит даже лучше, чем до него.

10). Компьютерная графика: компьютерная графика переживает сегодня период интенсивного развития. Она оказалась способна воссоздать на экране монитора бесконечное разнообразие фрактальных форм и пейзажей, погружая зрителя в удивительное виртуальное пространство. В настоящие время при помощи сравнительно простых алгоритмов появилась возможность создавать трёхмерные изображения фантастических ландшафтов и форм, которые способны преобразовываться во времени в ещё более захватывающие картины. Склонность фракталов походить на горы, цветы и деревья эксплуатируется некоторыми графическими редакторами (например, фрактальные облака из 3D studio MAX, фрактальные горы в World Builder). Фрактальные модели сегодня широко применяют в компьютерных играх, создавая в них обстановку, которую уже трудно отличить от реальности.

Конец ХХ века ознаменовался не только открытием поразительно красивых и бесконечно разнообразных структур, названных фракталами, но и осознанием фрактального характера природы. Окружающий нас мир очень разнообразен, и его объекты не укладываются в жёсткие рамки евклидовых линий и поверхностей.

Фракталы и мир вокруг нас

« Красота всегда относительна...Не следует полагать, что берега океана и впрямь бесформенны только потому, что их форма отлична от правильной формы построенных нами причалов; форму гор нельзя считать неправильной на основании того, что они не являются правильными конусами или пирамидами; из того, что расстояния между звёздами неодинаковы, ещё не следует, что их разбросала по небу неумелая рука. Эти неправильности существуют только в нашем воображении, на самом деле они таковыми не являются и никак не мешают истинным проявлениям жизни на Земле, ни в царстве растений и животных, ни среди людей». Эти слова английского учёного XVII в. Ричарда Бентли свидетельствуют о том, что идея объединить формы берегов, гор и небесных объектов и противопоставить их евклидовым построениям возникла в умах людей уже очень давно.

Галилео Галилей сказал, что «великая книга Природы написана на языке геометрии». Сейчас с уверенностью можно утверждать, что она написана на языке фрактальной геометрии.

То, что мы наблюдаем в природе, часто интригует нас бесконечным повторением одного и того же узора, увеличенного или уменьшенного во сколько угодно раз. Причудливые формы береговых линий и замысловатые изгибы рек, изломанные поверхности горных хребтов и очертания облаков, раскидистые ветви деревьев и коралловые рифы, робкое мерцание свечи и вспененные потоки горных рек - все это фракталы. Одни из них, типа облаков или бурных потоков, постоянно меняют свои очертания, другие, подобно деревьям или горным массивам, сохраняют свою структуру неизменной. Общим для всех типов фрактальных структур является их самоподобие - основное свойство, обеспечивающее выполнение во фракталах основного закона - закона единства в многообразии мироздания.

Фрактальными структурами также являются системы и органы человека. Так, например, кровеносные сосуды многократно разветвляются, т.е. имеют фрактальную природу. Электрическая активность сердца - фрактальный процесс. Кардиологи обнаружили, что спектральные характеристики сердечных сокращений подчиняются фрактальным законам, как землетрясения и экономические феномены. В тканях пищеварительного тракта одна волнистая поверхность встроена в другую. Легкие также представляют пример того, как большая площадь «втиснута» в маленькое пространство. В действительности, вся структура человеческого тела имеет фрактальную природу; это уже признано учеными. Принцип единого простого, задающего разнообразное сложное, заложен в геноме человека, когда одна клетка живого организма содержит информацию обо всем организме в целом.

Фрактальные структуры в природе

Приведем несколько образцов фото:

Как сказал биолог Джон Холдейн, “мир устроен не только причудливей, чем мы думаем, но и причудливей, чем мы можем предполагать”. Фракталы - не изобретения Мандельброта. Они существуют объективно. В природных формах и процессах, в науке и искусстве, которые этот мир отображают и познают. Именно “за изменение нашего взгляда на мир благодаря идеям фрактальной геометрии” Бенуа Мандельброту в 1993 году была присуждена почётная премия Вольфа в области физики.

В настоящее время большой популярностью пользуются фрактальные картины. Они производят совершенно фантастическое впечатление. Множество тонких линий, образующих одно целое, или же необычные элементы, сплетающиеся в единую картину. Вспышки яркого света и умеренные сглаженные линии. Фрактал кажется живым. Он горит, пылает, он завлекает, и Вы не можете отвести от него глаз, изучая даже самые крохотные и незначительные детали.

Фрактальная графика

Фрактальные картины в интерьере

Применение фракталов

Естественные науки

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и тому подобное. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.

Радиотехника

Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Коэн основал собственную компанию и наладил их серийный выпуск.

Информатика

Сжатие изображений

Фрактальное дерево

Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.

Компьютерная графика

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений.

Децентрализованные сети

Система назначения IP-адресов в сети Netsukuku (эта сеть является проектом создания распределённой самоорганизующейся одноранговой сети, способной обеспечить взаимодействие огромного количества узлов при минимальной нагрузке на центральный процессор и память) использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.

Экономика и финансы

А. А. Алмазов в своей книге «Фрактальная теория. Как поменять взгляд на рынки» предложил способ использования фракталов при анализе биржевых котировок, в частности -- на рынке Форекс.

Всякий раз, рассматривая фракталы, задумываешься, как прекрасен реальный мир и мир математики, и о том, что математика действительно является языком, который способен описать практически всё, что существует во Вселенной.

Библиографический список

1. Мандельброт Б. Фрактальная геометрия природы. М.: “Институт компьютерных исследований”, 2002. 656 с.

2. Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. ун-та 1999 г. 140 с.

3. Пайтген Х.-О., Рихтер П. Х. Красота фракталов. М.: “Мир”, 1993. - 176 с.

4. Тихоплав В.Ю., Тихоплав Т.С. Гармония хаоса, или фрактальная реальность. С.-Петербург: ИД “Весь”, 2003. 340 с.

5. Федер Е. Фракталы. М: “Мир”, 1991. 254 с.

6. Шредер М. Фракталы, хаос, степенные законы. Миниатюры из бесконечного рая. Ижевск: “РХД”, 2001. 528 с.

Список сайтов о фракталах

1. http://www.fractals.nsu.ru.

2. http://www.fractalworld.xaoc.ru.

3. http://www.multifractal.narod.ru.

4. http://algolist.manual.ru.

Размещено на Allbest.ru

Подобные документы

    Рассмотрение фрактальной размерности как одной из характеристик инженерной поверхности. Описание природных фракталов. Измерение длины негладкой (изломанной) линии. Подобие и скейлинг, самоподобие и самоаффинность. Соотношение "периметр-площадь".

    контрольная работа , добавлен 23.12.2015

    История появления теории фракталов. Фрактал – самоподобная структура, чье изображение не зависит от масштаба. Это рекурсивная модель, каждая часть которой повторяет в своем развитии развитие всей модели в целом. Практическое применение теории фракталов.

    научная работа , добавлен 12.05.2010

    Классические фракталы. Самоподобие. Снежинка Коха. Ковер Серпинского. L-системы. Хаотическая динамика. Аттрактор Лоренца. Множества Мандельброта и Жюлиа. Применение фракталов в компьютерных технологиях.

    курсовая работа , добавлен 26.05.2006

    Признаки некоторых четырехугольников. Реализация моделей геометрических ситуаций в средах динамической геометрии. Особенности динамической среды "Живая геометрия", особенности построения в ней моделей параллелограмма, ромба, прямоугольника и квадрата.

    курсовая работа , добавлен 28.05.2013

    Геометрическая картина мира и предпосылки возникновения теории фракталов. Элементы детерминированной L-системы: алфавит, слово инициализации и набор порождающих правил. Фрактальные свойства социальных процессов: синергетика и хаотическая динамика.

    курсовая работа , добавлен 22.03.2014

    Изучение проявлений геометрических законов в живой природе и использования их в образовательной практической деятельности. Описание геометрических законов и сущность геометрических построений. Графическое образование и его место в современном мире.

    дипломная работа , добавлен 24.06.2010

    Определение понятия модели, необходимость их применения в науке и повседневной жизни. Характеристика методов материального и идеального моделирования. Классификация математических моделей (детерминированные, стохастические), этапы процесса их построения.

    реферат , добавлен 20.08.2015

    Исследование понятия симметрии, соразмерности, пропорциональности и одинаковости в расположении частей. Характеристика симметрических свойств геометрических фигур. Описания роли симметрии в архитектуре, природе и технике, в решении логических задач.

    презентация , добавлен 06.12.2011

    История математизации науки. Основные методы математизации. Пределы и проблемы математизации. Проблемы применения математических методов в различных науках связаны с самой математикой (математическое изучение моделей), с областью моделирования.

    реферат , добавлен 24.05.2005

    Понятие и история исследования золотого сечения. Особенности его отражения в математике, природе, архитектуре и живописи. Порядок и принципы построения, структура и сферы практического применения золотого сечения, математическое обоснование и значение.

Христолюбова Ангелина

Самые гениальные открытия в науке способны кардинально изменить человеческую жизнь. Изобретенная вакцина может спасти миллионы людей, создание оружия, наоборот, эти жизни отнимает. Совсем недавно (в масштабе человеческой эволюции) мы научились «укрощать» электричество - и теперь не можем себе представить жизнь без всех этих удобных устройств, использующих электроэнергию. Но есть и такие открытия, которым мало кто придает значение, хотя они тоже сильно влияют на нашу жизнь.

Скачать:

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

гимназия №2 г. Сальска

«Кафедра естественно-математических дисциплин»

Исследовательская работа

тема: « Фракталы в нашей жизни ».

Христолюбова Ангелина Михайловна,

ученица 8 «Б» класса.

Руководитель:

Кузьминчук Елена Сергеевна,

учитель математики и информатики.

г. Сальск

2015 г.

Введение

Классификация фракталов

Применение фракталов

Заключение.

Список литературы.

Приложения.

Введение

Блох больших кусают блошки

Блошек тех – малютки-крошки,

Как говорят, ad infinitum.

Джонатан Свифт

Самые гениальные открытия в науке способны кардинально изменить человеческую жизнь. Изобретенная вакцина может спасти миллионы людей, создание оружия, наоборот, эти жизни отнимает. Совсем недавно (в масштабе человеческой эволюции) мы научились «укрощать» электричество - и теперь не можем себе представить жизнь без всех этих удобных устройств, использующих электроэнергию. Но есть и такие открытия, которым мало кто придает значение, хотя они тоже сильно влияют на нашу жизнь.

Одно из таких «незаметных» открытий - фракталы. Вам наверняка доводилось слышать это запоминающееся слово, но знаете ли вы, что оно означает и как много интересного скрыто в этом термине?

В каждом человеке заложена природная любознательность, стремление познавать окружающий его мир. И в этом стремлении человек старается придерживаться логики в суждениях. Анализируя процессы, происходящие вокруг него, он пытается найти логичность происходящего и вывести некоторую закономерность. Самые большие умы на планете заняты этой задачей. Грубо говоря, ученые ищут закономерность там, где ее быть не должно. Тем не менее, даже в хаосе можно найти связь между событиями. И эта связь - фрактал.

Сегодня вряд ли можно найти человека, занимающегося или интересующегося наукой, который не слышал бы о фракталах. Глядя на них трудно поверить, что это не творения природы и за ними скрываются математические формулы. Фракталы поразительно напоминают объекты живой и неживой природы вокруг нас. Словом они "как настоящие". Скорее всего, именно поэтому, однажды увидев, человек уже не может их забыть.

Любопытную мысль приводит в своей книге "Фрактальная геометрия природы" американский математик Бенуа Мандельброт: "Почему геометрию часто называют холодной и сухой? Одна из причин заключается в том, что она неспособна достаточно точно описать форму облака, горы, дерева или берега моря. Облака – это не сферы, линии берега – это не окружности, и кора не является гладкой, а молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах всегда бесконечно. Существование этих структур бросает нам вызов в виде трудной задачи изучения тех форм, которые Евклид отбросил как бесформенные – задачи исследования морфологии аморфного. Математики, однако, пренебрегли этим вызовом и предпочли все больше и больше отдаляться от природы, изобретая теории, которые не соответствуют ничему из того, что можно увидеть или почувствовать".

Все, что существует в реальном мире, является фракталом – это и есть наша гипотеза , а цель данной работы показать, что математика не бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом.

Объектом исследования выступают фракталы в математике и в реальном мире. В процессе работы нами были выделены следующие задачи исследования :

  1. Проанализировать и проработать литературу по теме исследования.
  2. Рассмотреть и изучить различные виды фракталов.
  3. Дать представление о фракталах, встречающихся в нашей жизни.

Актуальность заявленной темы определяется, в первую очередь, предметом исследования , в качестве которого выступает фрактальная геометрия.

Структура исследовательской работы определялась логикой исследования и поставленными задачами. Она включает в себя введение, две главы, заключение, список использованной литературы, приложения.

История появления понятия «фрактал»

Первые идеи фрактальной геометрии возникли в 19 веке.

Георг Кантор (Cantor, 1845-1918) - немецкий математик, логик, теолог, создатель теории бесконечных множеств, с помощью простой рекурсивной (повторяющейся) процедуры превратил линию в набор несвязанных точек. Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками. Получалась, так называемая, Пыль Кантора (приложения 1, 2).

Джузеппе Пеано (Giuseppe Peano; 1858-1932) - итальянский математик изобразил особую линию. Он брал прямую и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длина исходной линии. Далее он делал то же самое с каждым отрезком. И так до бесконечности. Уникальность такой линии в том, что она заполняет всю плоскость. Позднее аналогичное построение было осуществлено в трехмерном пространстве (приложения 3, 4).

Само слово «фрактал» появилось благодаря гениальному ученому Бенуа Мандельброту (приложение 5).

Он сам придумал этот термин в семидесятых годах прошлого века, позаимствовав слово fractus из латыни, где оно буквально означает «ломанный» или «дробленный». Что же это такое? Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе.

Определение фрактала, данное Мандельбротом, звучит так: «Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому».

Математическая база для появления теории фракталов была заложена за много лет до рождения Бенуа Мандельброта, однако развиться она смогла лишь с появлением вычислительных устройств. В начале своей научной деятельности Бенуа работал в исследовательском центре компании IBM. В то время сотрудники центра трудились над передачей данных на расстояние. В ходе исследований ученые столкнулись с проблемой больших потерь, возникающих из-за шумовых помех. Перед Бенуа стояла сложная и очень важная задача - понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным.

Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность - графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина каждый раз повторялась.

При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками. Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден.

Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров – завихрений.

Фрактальный рисунок не имеет идентичных элементов, но обладает подобностью в любом масштабе. Построить такое изображение с высокой степенью детализации вручную ранее было просто невозможно, на это требовалось огромное количество вычислений.

Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа (Gaston Maurice Julia) (приложение 6).

Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных.

Классификация фракталов

Фракталы делятся на группы. Самые большие группы это:

Геометрические фракталы;

Алгебраические фракталы;

Применение фракталов

Заключение.

Помимо той полезной роли, которую играет фрактальная геометрия при описании сложности природных объектов, она предлагает ещё хорошую возможность популяризации математических знаний. Понятия фрактальной геометрии наглядны и интуитивны. Её формы привлекательны с эстетической точки зрения и имеют разнообразные приложения. Поэтому фрактальная геометрия, возможно, поможет опровергнуть взгляд на математику как на сухую и недоступную дисциплину и станет дополнительным стимулом для учащихся в освоении этой интересной и увлекательной науки.

Даже сами учёные испытывают почти детский восторг, наблюдая за быстрым развитием этого нового языка - языка фракталов.

Во всем, что нас окружает, мы часто видим хаос, но на самом деле это не случайность, а идеальная форма, разглядеть которую нам помогают фракталы. Природа - лучший архитектор, идеальный строитель и инженер. Она устроена очень логично, и если где-то мы не видим закономерности, это означает, что ее нужно искать в другом масштабе. Люди все лучше и лучше это понимают, стараясь во многом подражать естественным формам. Инженеры проектируют акустические системы в виде раковины, создают антенны с геометрией снежинок и так далее. Уверены, что фракталы хранят в себе еще немало секретов, и многие из них человеку еще лишь предстоит открыть.

В результате проведенного исследования удалось выяснить, что встречались с фракталами 42,5% опрошенных, знают, что такое фрактал 15% опрошенных, хотели бы узнать, что такое фрактал 62,5% опрошенных обучающихся и учителей МБОУ гимназии №2 г. Сальска.

После того как были открыты фракталы, для многих стало очевидно, что старые, добрые формы евклидовой геометрии сильно проигрывают большинству природных объектов из-за отсутствия в них некоторой нерегулярности, беспорядка и непредсказуемости. Возможно, что новые идеи фрактальной геометрии помогут изучить многие загадочные явления окружающей природы.

Нам удалось показать, все, что существует в реальном мире, является фракталом. Мы убедились, что тому, кто занимается фракталами, открывается прекрасный, удивительный мир, в котором царят математика, природа и искусство. Мы надеемся, что после знакомства с нашей работой, вы, как и мы, убедитесь в том, что математика прекрасна и удивительна.

Список литературы.

  1. Красота математических поверхностей. - М.: Куб, 2005;
  2. Леонтьев В.П., Новейшая энциклопедия Интернет. - М.: ОЛМА-ПРЕСС, 2003;
  3. Мандельброт Б. Фрактальная геометрия природы. - М.: «Институт компьютерных исследований», 2002;
  4. Маршак С.Я. , Изд.: Художественная литература.1985;
  5. Шляхтина С.,«В мире фрактальной графики». - СПб., Компьютер Price, 2005;
  6. Газета «Информатика», № 24, 2008;
  7. Пайтген Х.-О., Рихтер П. Х. Красота фракталов. - М.: «Мир», 1993;
  8. Кроновер Р. М. Фракталы и хаос в динамических системах. Основы теории;
  9. Мандельброт Б. Самоаффинные фрактальные множества, «Фракталы в физике». М.: Мир 1988 г.;
  10. Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. ун-та 1999 г.;
  11. http://elementy.ru;
  12. http://ru.wikipedia.org;
  13. http://www.deviantart.com;
  14. http://fractals.nsu.ru;
  15. http://fraktals.ucoz.ru;
  16. http://www.bsu.burnet.ru/library/berson/index.html;
  17. http://www.uni-dubna.ru/kafedr/mazny/page11.htm;
  18. http://robots.ural.net/fractals/;
  19. http://fract.narod.ru;
  20. http://sakva.narod.ru/fractals.htm#History;
  21. http://oco.newmail.ru/fractals.htm;
  22. http://www.ghcube.com/fractals;
  23. http://www.fractalus.com/galleries/.
gastroguru © 2017