Как составить пропорцию? Поймет любой школьник и взрослый. Соотношение и пропорция Как посчитать пропорцию

Соотношение (в математике) - это взаимосвязь между двумя или более числами одного рода. Соотношения сравнивают абсолютные величины или части целого. Соотношения вычисляются и записываются по-разному, но основные принципы одинаковы для всех соотношений.

Шаги

Часть 1

Определение соотношений

    Использование соотношений. Соотношения используются как в науке, так и в повседневной жизни для сравнения величин. Простейшие соотношения связывают только два числа, но есть соотношения, сравнивающие три или более значения. В любой ситуации, в которой присутствует более одной величины, можно записать соотношение. Связывая некоторые значения, соотношения могут, например, подсказать, как увеличить количество ингредиентов в рецепте или веществ в химической реакции.

  1. Определение соотношений. Соотношение - это взаимосвязь между двумя (или более) значениями одного рода. Например, если для приготовления торта необходимы 2 стакана муки и 1 стакан сахара, то соотношение муки к сахару равно 2 к 1.

    • Соотношения могут быть использованы и в тех случаях, когда две величины не связаны друг с другом (как в примере с тортом). Например, если в классе учатся 5 девочек и 10 мальчиков, то соотношение девочек к мальчикам равно 5 к 10. Эти величины (число мальчиков и число девочек) не зависят друг от друга, то есть их значения изменятся, если кто-то уйдет из класса или в класс придет новый ученик. Соотношения просто сравнивают значения величин.
  2. Обратите внимание на разные способы представления соотношений. Соотношения могут быть представлены словами или при помощи математических символов.

    • Очень часто соотношения выражены словами (как показано выше). Особенно такая форма представления соотношений применяется в повседневной жизни, далекой от науки.
    • Также соотношения можно выразить через двоеточие. При сравнении двух чисел в соотношении вы будете использовать одно двоеточие (например, 7:13); при сравнении трех и более значений ставьте двоеточие между каждой парой чисел (например, 10:2:23). В нашем примере с классом вы можете выразить соотношение девочек и мальчиков так: 5 девочек: 10 мальчиков. Или так: 5:10.
    • Реже соотношения выражаются при помощи наклонной черты. В примере с классом оно может быть записано так: 5/10. Тем не менее это не дробь и читается такое соотношение не как дробь; более того, запомните, что в соотношении цифры не представляют собой часть единого целого.

    Часть 2

    Использование соотношений
    1. Упростите соотношение. Соотношение можно упростить (аналогично дробям), разделив каждый член (число) соотношения на . Однако при этом не упустите из виду исходных значений соотношения.

      • В нашем примере в классе 5 девочек и 10 мальчиков; соотношение равно 5:10. Наибольший общий делитель членов соотношения равен 5 (так как и 5, и 10 делятся на 5). Разделите каждое число соотношения на 5 и получите соотношение 1 девочка к 2 мальчикам (или 1:2). Однако при упрощении соотношения помните об исходных значениях. В нашем примере в классе не 3 ученика, а 15. Упрощенное соотношение сравнивает количество мальчиков и количество девочек. То есть на каждую девочку приходится 2 мальчика, но в классе не 2 мальчика и 1 девочка.
      • Некоторые соотношения не упрощаются. Например, соотношение 3:56 не упрощается, так как у этих чисел нет общих делителей (3 - простое число, а 56 не делится на 3).
    2. Используйте умножение или деление для увеличения или уменьшения соотношения. Распространены задачи, в которых необходимо увеличить или уменьшить два значения, пропорциональных друг другу. Если вам дано соотношение и нужно найти соответствующее ему большее или меньшее соотношение, умножьте или разделите исходное соотношение на некоторое данное число.

      • Например, пекарю нужно утроить количество ингредиентов, данных в рецепте. Если по рецепту соотношение муки к сахару составляет 2 к 1 (2:1), то пекарь умножит каждый член соотношения на 3 и получит соотношение 6:3 (6 чашек муки к 3 чашкам сахара).
      • С другой стороны, если пекарю необходимо уполовинить количество ингредиентов, данных в рецепте, то пекарь разделит каждый член соотношения на 2 и получит соотношение 1:½ (1 чашка муки к 1/2 чашке сахара).
    3. Поиск неизвестного значения, когда даны два эквивалентных соотношения. Это задача, в которой необходимо найти неизвестную переменную в одном соотношении при помощи второго соотношения, которое эквивалентно первому. Для решения таких задач пользуйтесь . Запишите каждое соотношение в виде обыкновенной дроби, поставьте между ними знак равенства и перемножьте их члены крест-накрест.

      • Например, дана группа учеников, в которой 2 мальчика и 5 девочек. Каково будет число мальчиков, если число девочек увеличить до 20 (пропорция сохраняется)? Во-первых, запишите два соотношения - 2 мальчика:5 девочек и х мальчиков:20 девочек. Теперь запишите эти соотношения в виде дробей: 2/5 и х/20. Перемножьте члены дробей крест-накрест и получите 5x = 40; следовательно, х = 40/5 = 8.

    Часть 3

    Распространенные ошибки
    1. Избегайте сложения и вычитания в текстовых задачах на соотношение. Многие текстовые задачи выглядят примерно так: «В рецепте необходимо использовать 4 клубня картофеля и 5 корнеплодов моркови. Если вы хотите добавить 8 клубней картофеля, то сколько понадобится моркови, чтобы соотношение осталось неизменным?» При решении подобных задач ученики часто допускают ошибку, прибавляя одинаковое количество ингредиентов к исходному числу. Однако, чтобы сохранить соотношение, нужно использовать умножение. Вот примеры правильного и неправильного решения:

      • Неверно: «8 - 4 = 4 - так мы добавили 4 клубня картофеля. Значит, нужно взять 5 корнеплодов моркови и к ним добавить еще 4... Стоп! Соотношения так не вычисляют. Стоит попробовать снова».
      • Верно: «8 ÷ 4 = 2 - значит, мы умножили количество картофеля на 2. Соответственно, 5 корнеплодов моркови тоже нужно умножить на 2. 5 x 2 = 10 - в рецепт нужно добавить 10 корнеплодов моркови».
      • Записывайте единицы измерения после каждой величины. В текстовых задачах гораздо проще распознать ошибку, если записывать единицы измерения после каждого значения. Помните, что величины с одними и теми же единицами измерения в числителе и знаменателе сокращаются. Сократив выражение, вы получите верный ответ.
        • Пример: дано 6 коробок, в каждой третьей коробке находится 9 шариков. Сколько всего шариков?
        • Неверно: 6 коробок x 3 коробки/9 шариков = ... Стоп, ничего нельзя сократить. Ответ будет таким: «коробки x коробки / шарики». Он не имеет смысла.
        • Верно: 6 коробок x 9 шариков/3 коробки = 6 коробок * 3 шарика/1 коробку = 6 коробок * 3 шарика/1 коробку = 6 * 3 шарика/1 = 18 шариков.

Для решения большинства задач в математике средней школы необходимо знание по составлению пропорций. Это несложное умение поможет не только выполнять сложные упражнения из учебника, но и углубиться в саму суть математической науки. Как составить пропорцию? Сейчас разберем.

Самым простым примером является задача, где известны три параметра, а четвертый необходимо найти. Пропорции бывают, конечно, разные, но часто требуется найти по процентам какое-нибудь число. Например, всего у мальчика было десять яблок. Четвертую часть он подарил своей маме. Сколько осталось яблок у мальчика? Это самый простой пример, который позволит составить пропорцию. Главное это сделать. Изначально было десять яблок. Пусть это 100%. Это мы обозначили все его яблоки. Он отдал одну четвертую часть. 1/4=25/100. Значит, у него осталось: 100% (было изначально) - 25% (он отдал) = 75%. Эта цифра показывает процентное отношение количества оставшихся фруктов к количеству имевшихся сначала. Теперь у нас есть три числа, по которым уже можно решить пропорцию. 10 яблок - 100%, х яблок - 75%, где х - искомое количество фруктов. Как составить пропорцию? Необходимо понимать, что это такое. Математически это выглядит так. Знак равно поставлен для вашего понимания.

10 яблок = 100%;

x яблок = 75%.

Оказывается, что 10/x = 100%/75. Это и есть основное свойство пропорций. Ведь чем больше x, тем больше процентов составляет это число от исходного. Решаем эту пропорцию и получаем, что x=7,5 яблок. Почему мальчик решил отдать нецелое количество, нам неизвестно. Теперь вы знаете, как составить пропорцию. Главное, найти два соотношения, в одном из которых есть искомое неизвестное.

Решение пропорции часто сводится к простому умножению, а потом к делению. В школах детям не объясняют, почему это именно так. Хотя важно понимать, что пропорциональные отношения есть математическая классика, сама суть науки. Для решения пропорций необходимо уметь обращаться с дробями. Например, часто приходится переводить проценты в обыкновенные дроби. То есть запись 95% не подойдет. А если сразу написать 95/100, то можно провести солидные сокращения, не начиная основного подсчета. Сразу стоит сказать, что если ваша пропорция получилась с двумя неизвестными, то ее не решить. Никакой профессор вам здесь не поможет. А ваша задача, скорее всего, имеет более сложный алгоритм правильных действий.

Рассмотрим еще один пример, где нет процентов. Автомобилист купил 5 литров бензина за 150 рублей. Он подумал о том, сколько он бы заплатил за 30 литров топлива. Для решения этой задачи обозначим за x искомое количество денег. Можете самостоятельно решить эту задачу и потом проверить ответ. Если вы еще не поняли, как составить пропорцию, то смотрите. 5 литров бензина - это 150 рублей. Как и в первом примере, запишем 5л - 150р. Теперь найдем третье число. Конечно, это 30 литров. Согласитесь, что пара 30 л - х рублей уместна в данной ситуации. Перейдем на математический язык.

5 литров - 150 рублей;

30 литров - х рублей;

Решаем эту пропорцию:

x = 900 рублей.

Вот и решили. В своей задаче не забудьте проверить на адекватность ответ. Бывает, что при неправильном решении автомобили достигают нереальных скоростей в 5000 километров в час и так далее. Теперь вы знаете, как составить пропорцию. Также вы сможете ее решить. Как видите, в этом нет ничего сложного.

Формула пропорций

Пропо́рция - это равенство двух отношений, когда a:b=c:d

отношение 1 : 10 равно отношению 7 : 70, что также можно записать в виде дроби: 1 10 = 7 70 читается как: «один относится к десяти так же, как семь относится к семидесяти»

Основные свойства пропорции

Произведение крайних членов равно произведению средних членов (крест-накрест): если a:b=c:d , то a⋅d=b⋅c

1 10 ✕ 7 70 1 70 = 10 7

Обращение пропорции: если a:b=c:d , то b:a=d:c

1 10 7 70 10 1 = 70 7

Перестановка средних членов: если a:b=c:d , то a:c=b:d

1 10 7 70 1 7 = 10 70

Перестановка крайних членов: если a:b=c:d , то d:b=c:a

1 10 7 70 70 10 = 7 1

Решение пропорции с одним неизвестным | Уравнение

1 : 10 = x : 70 или 1 10 = x 70

Чтобы найти икс, нужно перемножить два известных числа крест-накрест и поделить на противоположное значение

x = 1 70 10 = 7

Как посчитать пропорцию

Задача: нужно пить 1 таблетку активированного угля на 10 килограмм веса. Сколько таблеток нужно выпить, если человек весит 70 кг?

Составим пропорцию: 1 таблетка - 10 кг x таблеток - 70 кг Чтобы найти икс, нужно перемножить два известных числа крест-накрест и поделить на противоположное значение: 1 таблетка x таблеток ✕ 10 кг 70 кг x = 1 70 : 10 = 7 Ответ: 7 таблеток

Задача: за пять часов Вася пишет две статьи. Сколько статей он напишет за 20 часов?

Составим пропорцию: 2 статьи - 5 часов x статей - 20 часов x = 2 20 : 5 = 8 Ответ: 8 статей

Будущим выпускникам школ могу сказать, что умение составлять пропорции мне пригодилось и , и для того, чтобы пропорционально уменьшать картинки, и в HTML-вёрстке интернет-страницы, и в бытовых ситуациях.

Основой математических исследований является возможность получить знание об определённых величинах, сравнивая их с другими величинами, которые либо равны , либо больше или меньше , чем те которые являются предметом исследования. Это обычно производится с помощью ряда уравнений и пропорций . Когда мы используем уравнения, то мы определяем искомую величину, находя её равенство с какой-то другой уже знакомой величиной или величинами.

Однако, часто бывает, что мы сравниваем неизвестную величину с другими, которые не равны ей, а больше или меньше её. Здесь нужен другой подход к обработке данных. Нам может понадобиться узнать, например, на сколько одна величина больше чем другая, или сколько раз одна содержит другую. Для нахождения ответа на эти вопросы мы узнаем что такое соотношение двух величин. Одно соотношение называется арифметическим , а другое геометрическим . Хоть и стоит заметить, что оба эти термина не были приняты случайно или только в целях отличия. Как арифметическое, так и геометрическое соотношения применимы как к арифметике, так и к геометрии.

Являясь компонентом обширного и важного предмета, пропорция зависит от соотношений, поэтому необходимо чёткое и полное понимание этих понятий.

338. Арифметическое соотношение это разница между двумя величинами или рядом величин . Сами по себе величины называются членами соотношения, то есть члены, между которыми есть соотношение. Таким образом 2 это арифметическое соотношение 5 и 3. Это выражается помещая знак минус между двумя величинами, то есть 5 - 3. Конечно термин арифметического соотношения и его расписывание по пунктам практически бесполезно, так как происходит лишь замещение слова разница на знак минус в выражении.

339. Если оба члена арифметического соотношения умножить или разделить на одну и ту же величину, то соотношение, в конечном итоге, будет умножено или разделено на эту величину.
Таким образом, если имеем a - b = r
Тогда перемножим обе стороны на h , (Акс. 3.) ha - hb = hr
И разделив на h, (Акс. 4.) $\frac{a}{h}-\frac{b}{h}=\frac{r}{h}$

340. Если члены арифметического соотношения добавляют или отнимают от соответствующих членов другого, то соотношение суммы или разности будет равно сумме или разности двух соотношений.
Если a - b
И d - h,
являются двумя соотношениями,
Тогда (a + d) - (b + h) = (a - b) + (d - h). Что в каждом случае = a + d - b - h.
И (a - d) - (b - h) = (a - b) - (d - h). Что в каждом случае = a - d - b + h.
Таким образом арифметическое отношение 11 - 4 равно 7
И арифметическое отношение 5 - 2 равно 3
Отношение суммы членов 16 - 6 это 10, - сумма соотношений.
Отношение разности членов 6 - 2 это 4, - разность соотношений.

341. Геометрическое соотношение - это отношение между величинами, которое выражается ЧАСТНЫМ , если одну величину делят на другую.
Таким образом соотношение 8 к 4, можно записать как 8/4 или 2. То есть частное деления 8 на 4. Другими словами, оно показывает сколько раз 4 содержится в 8.

Тем же самым способом, соотношение любой величины к другой может быть определено, разделив первую на вторую или, что, в принципе, одно и то же, сделав первую числителем дроби, а вторую - знаменателем.
Так соотношение a к b это $\frac{a}{b}$
Соотношение d + h к b + c это $\frac{d+h}{b+c}$.

342. Геометрическое соотношение также записывается, размещая две точки одну над другой между сравниваемыми величинами.
Таким образом a:b это запись соотношения a к b, а 12:4 - соотношения 12 к 4. Две величины вместе формируют пару , в которой первый член называется антецедентом , а последний - консеквентом .

343. Эта запись с помощью точек и другая, в форме дроби, являются взаимозаменяемыми по мере необходимости, при этом антецедент становится числителем дроби, а консеквент - знаменателем.
Таким образом 10:5 это то же, что и $\frac{10}{5}$ а b:d, то же, что и $\frac{b}{d}$.

344. Если из этих трёх значений: антецедента, консеквента и соотношения даны любые два , то третье можно найти.

Пусть a= антецедент, c= консеквент, r= соотношение.
По определению $r=\frac{a}{c}$, то есть, соотношение равно антецеденту разделённому на консеквент.
Умножая на c, a = cr, то есть, антецедент равен консеквенту умноженному на соотношение.
Разделим на r, $c=\frac{a}{r}$, то есть, консеквент равен антецеденту делёному на соотношение.

Соотв. 1. Если у двух пар антецеденты и консеквенты равны, то их соотношения тоже равны.

Соотв. 2. Если у двух пар соотношения и антеценденты равны, то и консеквенты равны и если соотношения и консеквенты равны, то и антецеденты равны.

345. Если две сравниваемые величины равны , то их соотношение равно единице или соотношению равенства. Соотношение 3*6:18 равно единице, так как частное любой величины разделённой на саму себя равно 1.

Если антецедент пары больше, чем консеквент, то соотношение больше единицы. Так как делимое больше, чем делитель, то частное больше единицы. Так соотношение 18:6 равно 3. Это называется соотношение большего неравенства .

С другой стороны, если антецедент меньше , чем консеквент, то соотношение меньше единциы и это называется соотношением меньшего неравенства . Так соотношение 2:3 меньше единицы, потому что делимое меньше делителя.

346. Обратное соотношение - это соотношение двух обратных величин.
Так соотношение обратное 6 к 3 это ⅙ к ⅓, то есть ⅙:⅓.
Прямое соотношение a к b это $\frac{a}{b}$, то есть антецедент разделённый на консеквент.
Обратное соотношение это $\frac{1}{a}$:$\frac{1}{b}$ или $\frac{1}{a}.\frac{b}{1}=\frac{b}{a}$.
то есть косеквент b разделённый на антецедент a.

Отсюда обратное соотношение выражается путём инвертирования дроби , которая отображает прямое соотношение, либо, когда запись ведётся с помощью точек, инвертируя порядок записи членов .
Таким образом a относится к b обратно тому, как b к a.

347. Сложное соотношение это соотношение произведений соответствующих членов с двумя и более простыми соотношениями.
Так соотношение 6:3, равно 2
И соотношение 12:4, равно 3
Составленное из них соотношение 72:12 = 6.

Здесь сложное соотношение получается, умножая между собой два антецедента и также два консеквента простых соотношений.
Так соотношение составленное
Из соотношения a:b
И соотношения c:d
и соотношения h:y
Это соотношение $ach:bdy=\frac{ach}{bdy}$.
Сложное соотношение не отличается по своей природе от любого другого соотношения. Этот термин используется, чтобы в определённых случаях показать происхождение соотношения.

Соотв. Сложное соотношение равно произведению простых соотношений.
Соотношение a:b, равно $\frac{a}{b}$
Соотношение c:d, равно $\frac{c}{d}$
Соотношение h:y, равно $\frac{h}{y}$
И соотношение сложенное из этих трёх будет ach/bdy, что является произведением дробей, которые выражают простые соотношения.

348. Если в последовательности соотношений в каждой предыдущей паре консеквент является антецедентом в последующей, то соотношение первого антецедента и последнего консеквента равны тому, которое получено из промежуточных соотношений.
Так в ряде соотношений
a:b
b:c
c:d
d:h
соотношение a:h равно соотношению, сложенному из соотношений a:b, и b:c, и c:d, и d:h. Так сложное соотношение в последней статье равно $\frac{abcd}{bcdh}=\frac{a}{h}$, или a:h.

Таким же образом все величины, которые являются и антецедентами и консеквентами исчезнут , когда произведение дробей будет упрощено до своих младших членов и в остатке сложное соотношение будет выражаться первым антецедентом и последним консеквентом.

349. Особый класс сложных соотношений получается при умножении простого соотношения на самого себя или на другое равное соотношение. Эти соотношения называются двойными , тройными , четверными , и так далее, в соответствии с количеством операций умножения.

Соотношение, составленное из двух равных соотношений, то есть, квадрата двойным соотношением.

Составленное из трёх , то есть, куб простого соотношения, называют тройным , и так далее.

Аналогично соотношение квадратных корней двух величин, называется соотношением квадратного корня , а соотношение кубических корней - соотношением кубического корня , и так далее.
Таким образом простое соотношение a к b, равно a:b
Двойное соотношение a к b, равно a 2:b 2
Тройное соотношение a к b, равно a 3:b 3
Соотношение квадратного корня a к b, равно √a :√b
Соотношение кубического корня a к b, равно 3 √a : 3 √b , и так далее.
Термины двойной , тройной , и так далее не нужно смешивать с удвоенным , утроенным , и так далее.
Соотношение 6 к 2 равно 6:2 = 3
Удвоим это соотношение, то есть, соотношение дважды, то получим 12:2 = 6
Утроим это соотношение, то есть это соотношение трижды, то получим 18:2 = 9
А двойное соотношение, то есть квадрат соотношения, равен 6 2:2 2 = 9
И тройное соотношение, то есть куб соотношения, равен 6 3:2 3 = 27

350. Для того, чтобы величины можно соотнести друг с другом, они должны быть одинакового рода, так, чтобы можно было с уверенностью утверждать равны ли они между собой, или одна из них больше или меньше. Фут относится к дюйму, как 12 к 1: он в 12 раз больше, чем дюйм. Но нельзя, например, сказать, что час длиннее или короче, чем палка, или акр больше или меньше, чем градус. Однако, если эти величины выражены в числах , то может существовать соотношение между этими числами. То есть может существовать соотношение между количеством минут в часе и количеством шагов в миле.

351. Обратившись к природе соотношений, следующим шагом нам нужно учесть способ, каким образом скажется на самом соотношении изменение одного или двух членов, которые сравнивают между собой. Вспомним, что прямое соотношение выражается в виде дроби, где антецедет пары всегда это числитель , а консеквент - знаменатель . Тогда будет легко из свойства дробей получить, что изменения в соотношении происходят путём варьирования сравниваемых величин. Соотношение двух величин такое же как и значение дробей, каждая из которых представляет частное : числитель делённый на знаменатель. (Статья. 341.) Теперь было показано, что умножать числитель дроби на любую величину, это то же, что и умножать значение на эту же величину и что деленить числитель, это то же, что и деленить значения дроби. Поэтому,

352. Умножать антецедент пары на любую величину, значит умножать соотношения на эту величину, а делить антецедент - деленить это соотношение .
Таким образом соотношение 6:2 равное 3
И соотношение 24:2 равное 12.
Здесь антецедент и соотношение в последней паре в 4 раза больше, чем в первой.
Отношение a:b равно $\frac{a}{b}$
И отношение na:b равно $\frac{na}{b}$.

Соотв. При известном консеквенте, чем больше антецедент , тем больше соотношение , и, наоборот, чем больше соотношение, тем больше антецедент.

353. Умножая консеквент пары на любую величину, в результате получаем деление соотношения на эту величину, а деля консеквент - умножаем соотношение. Умножая знаменатель дроби, делим значение, а деля знаменатель - значение умножается..
Так соотношение 12:2 равно 6
И соотношение 12:4 равно 3.
Здесь консеквент второй пары в два раза больше, а соотношение в два раза меньше, чем первое.
Соотношение a:b равно $\frac{a}{b}$
И соотношение a:nb равно $\frac{a}{nb}$.

Соотв. При данном антецеденте, чем больше консеквент, тем меньше соотношение. И наоборот, чем больше соотношение, тем меньше консеквент.

354. Из двух последних статей следует, что умножение антецедента пары на любую величину окажет такой же эффект на соотношение, как деление консеквента на эту величину, а деление антецедента , окажет такой же эффект, как умножение консеквента .
Поэтому соотношение 8:4, равно 2
Умножая антецедент на 2, соотношение 16:4 равно 4
Разделив антецедент на 2, соотношение 8:2 равно 4.

Соотв. Любой множитель или делитель может быть перенесён от антецедента пары к консеквенту или от консеквента к антецеденту без изменения соотношения.

Стоит заметить, что когда множитель таким образом переносится от одного члена к другому, то он становится делителем, а переносимый делитель становится множителем.
Так соотношение 3.6:9 = 2
Перенеся множитель 3, $6:\frac{9}{3}=2$
то же самое соотношение.

Соотношение $\frac{ma}{y}:b=\frac{ma}{by}$
Перенеся y $ma:by=\frac{ma}{by}$
Перенеся m, a:$a:\frac{m}{by}=\frac{ma}{by}$.

355. Как очевидно из Статей. 352 и 353, если антецедент и консеквент оба умножить или разделить на одну и ту же величину, то соотношение не меняется .

Соотв. 1. Соотношение двух дробей , у которых есть общий знаменатель, такое же как отношение их числителей .
Таким образом соотношение a/n:b/n, то же самое, что и a:b.

Соотв. 2. Прямое соотношение двух дробей, у которых есть общий числитель, равно обратному соотношению их знаменателей .

356. Из статьи легко определить соотношение любых двух дробей. Если каждый член умножить на два знаменателя, то соотношение будет задано интегральными выражениями. Таким образом умножая члены пары a/b:c/d на bd, получаем $\frac{abd}{b}$:$\frac{bcd}{d}$, что становится ad:bc, путём сокращения общих величин из числителей и знаменателей.

356. b. Соотношение большего неравенства увеличивает его
Пусть соотношение большего неравенства будет задано как 1+n:1
И любое соотношение как a:b
Сложное соотношение будет (Статья. 347,) a + na:b
Что больше, чем соотношение a:b (Статья. 351. соотв.)
Но соотношение меньшего неравенства , сложенное с другим соотношением, уменьшает его.
Пусть соотношение меньшей разности 1-n:1
Любой заданное соотношение a:b
Сложное соотношение a - na:b
Что меньше, чем a:b.

357. Если к или от членов любой пары прибавить или отнять две другие величины, которые находятся в таком же соотношении, то суммы или остатки будут иметь такое же соотношение .
Пусть соотношение a:b
Будет такое же, как и c:d
Тогда соотношение суммы антецедентов к сумме консеквентов, а именно, a + c to b + d, тоже одинаковое.
То есть $\frac{a+c}{b+d}$ = $\frac{c}{d}$ = $\frac{a}{b}$.

Доказательство.

1. Согласно предположению, $\frac{a}{b}$ = $\frac{c}{d}$
2. Умножаем на b и на d, ad = bc
3. Добавляем cd к обеим сторонам, ad + cd = bc + cd
4. Делим на d, $a+c=\frac{bc+cd}{d}$
5. Делим на b + d, $\frac{a+c}{b+d}$ = $\frac{c}{d}$ = $\frac{a}{b}$.

Соотношение разницы антецедентов к разнице консеквентов также одинаковое.

358. Если в нескольких парах соотношения равны, то сумма всех антецедентоа относится к сумме всех консеквентов, как любой антецедент к своему консеквенту.
Таким образом соотношение
|12:6 = 2
|10:5 = 2
|8:4 = 2
|6:3 = 2
Таким образом соотношение (12 + 10 + 8 + 6):(6 + 5 + 4 + 3) = 2.

358. b. Соотношение большего неравенства уменьшается , добавляя ту же величину к обоим членам.
Пусть данное соотношение a+b:a или $\frac{a+b}{a}$
Добавив x к обоим членам, мы получаем a+b+x:a+x или $\frac{a+b}{a}$.

Первое становится $\frac{a^2+ab+ax+bx}{a(a+x)}$
А последнее $\frac{a^2+ab+ax}{a(a+x)}$.
Так как последний числитель очевидно меньше, чем другой, то соотношение должно быть меньше. (Статья. 351. соотв.)

Но соотношение меньшего неравенства увеличивается , добавляя одинаковую величину к обоим членам.
Пусть данное соотношение (a-b):a, или $\frac{a-b}{a}$.
Прибавив x к обоим членам, оно принимает вид (a-b+x):(a+x) или $\frac{a-b+x}{a+x}$
Приведя их к общему знаменателю,
Первый становится $\frac{a^2-ab+ax-bx}{a(a+x)}$
А последний, $\frac{a^2-ab+ax}{a(a+x)}.\frac{(a^2-ab+ax)}{a(a+x)}$.

Так как последний числитель больше, чем другой, то соотношение больше.
Если вместо добавления ту же самую величину отнять от двух членов, то очевидно, что эффект на соотношение будет обратным.

Примеры.

1. Что больше: соотношение 11:9, или соотношение 44:35?

2. Что больше: соотношение $(a+3):\frac{a}{6}$, или соотношение $(2a+7):\frac{a}{3}$?

3. Если антецедент пары равен 65, а соотношение равно 13, то какой консеквент?

4. Если консеквент пары равен 7, и соотношение равно 18, то какой антецедент?

5. Как выглядит сложное соотношение составленное из 8:7, и 2a:5b, а также (7x+1):(3y-2)?

6. Как выглядит сложное соотношение составленное из (x+y):b, и (x-y):(a + b), а также (a+b):h? Отв. (x 2 - y 2):bh.

7. Если соотношения (5x+7):(2x-3), и $(x+2):\left(\frac{x}{2}+3\right)$ образуют сложное соотношение, то какое соотношение получится: большее или меньшее неравенство? Отв. Соотношение большего неравенства.

8. Каково соотношение составленное из (x + y):a и (x - y):b, и $b:\frac{x^2-y^2}{a}$? Отв. Соотношение равенства.

9. Каково соотношение сложенное из 7:5, и удвоенного соотношения 4:9, и утроенного соотношения 3:2?
Отв. 14:15.

10. Каково соотношение составленное из 3:7, и утроенного соотношения x:y, и извлечения корня из соотношения 49:9?
Отв. x 3:y 3 .

Соотношением называют некоторую взаимосвязь между сущностями нашего мира. Это могут быть числа, физические величины, предметы, продукты, явления, действия и даже люди.

В повседневной жизни, когда речь заходит о соотношениях, мы говорим «соотношения того-то и того-то» . Например, если в вазе лежит 4 яблока и 2 груши, то мы говорим «соотношения яблок и груш» «соотношения груш и яблок» .

В математике соотношение чаще употребляется как «отношение того-то к тому-то» . Например, соотношение четырёх яблок и двух груш, которые мы рассматривали выше, в математике будет читаться как «отношение четырех яблок к двум грушам» или если поменять местами яблоки и груши, то «отношение двух груш к четырем яблокам» .

Соотношение выражается, как a к b (где вместо a и b любые числа), но чаще можно встретить запись, которая составлена с помощью двоеточия как a: b . Прочитать эту запись можно различными способами:

  • a к b
  • a относится к b
  • отношение a к b

Запишем соотношение четырех яблок и двух груш с помощью символа соотношения:

4: 2

Если же поменяем местами яблоки и груши, то будем иметь соотношение 2: 4 . Это соотношение можно прочитать как «два к четырем» либо либо «две груши относятся к четырем яблокам» .

В дальнейшем соотношение мы будем называть отношением.

Содержание урока

Что такое отношение?

Отношение, как было сказано ранее, записывается в виде a:b . Также его можно записать в виде дроби . А мы знаем, что такая запись в математике означает деление. Тогда результатом выполнения отношения будет частное чисел a и b .

Отношением в математике называют частное двух чисел.

Отношение позволяет узнать сколько количества одной сущности приходится на единицу другой. Вернемся к отношению четырех яблок к двум грушам (4: 2) . Это отношение позволит нам узнать, сколько яблок приходится на единицу груши. Под единицей подразумевается одна груша. Сначала запишем отношение 4: 2 в виде дроби:

Данное отношение представляет собой деление числа 4 на число 2. Если выполнить это деление, мы получим ответ на вопрос сколько яблок приходится на единицу груши

Получили 2. Значит четыре яблока и две груши (4: 2) соотносятся (взаимосвязаны друг с другом) так, что на одну грушу приходится два яблока

На рисунке показано, как четыре яблока и две груши соотносятся между собой. Видно, что на каждую грушу приходятся два яблока.

Отношение можно перевернуть, записав как . Тогда у нас получится соотношение двух груш и четырех яблок или «отношение двух груш к четырем яблокам». Это отношение покажет, сколько груш приходится на единицу яблока. Под единицей яблока подразумевается одно яблоко.

Чтобы найти значение дроби нужно вспомнить, как делить меньшее число на большее

Получили 0,5. Переведём эту десятичную дробь в обыкновенную:

Сократим полученную обыкновенную дробь на 5

Получили ответ (половину груши). Значит две груши и четыре яблока (2: 4) соотносятся (взаимосвязаны друг с другом) так, что на одно яблоко приходится половина груши

На рисунке показано, как две груши и четыре яблока соотносятся между собой. Видно, что на каждое яблоко приходится половинка груши.

Числа, из которых составлено отношение, называют членами отношения . Например, в отношении 4: 2 членами являются числа 4 и 2.

Рассмотрим другие примеры соотношений. Для приготовления чего-либо составляется рецепт. Рецепт строят из соотношений между продуктами. Например, для приготовления овсяной каши обычно требуется стакан хлопьев на два стакана молока или воды. Получается соотношение 1: 2 («один к двум» или «один стакан хлопьев на два стакана молока»).

Преобразуем соотношение 1: 2 в дробь, получим . Вычислив эту дробь, получим 0,5 . Значит один стакан хлопьев и два стакана молока соотносятся (взаимосвязаны друг с другом) так, что на один стакан молока приходится половина стакана хлопьев.

Если перевернуть соотношение 1: 2 то получится соотношение 2: 1 («два к одному» или «два стакана молока на один стакан хлопьев»). Преобразуем соотношение 2: 1 в дробь, получим . Вычислив эту дробь, получим 2. Значит два стакана молока и один стакан хлопьев соотносятся (взаимосвязаны друг с другом) так, что на один стакан хлопьев приходятся два стакана молока.

Пример 2. В классе 15 школьников. Из них 5 – это мальчики, 10 – девочки. Можно записать соотношение девочек и мальчиков 10: 5 и преобразовать это соотношение в дробь . Вычислив эту дробь получим 2. То есть девочки и мальчики соотносятся между собой так, что на каждого мальчика приходятся две девочки

На рисунке показано, как десять девочек и пять мальчиков соотносятся между собой. Видно, что на каждого мальчика приходятся две девочки.

Соотношение не всегда можно обращать в дробь и находить частное. В некоторых случаях это будет нелогично.

Так, если перевернуть отношение получится , а это уже отношение мальчиков к девочкам. Если вычислить эту дробь получается 0,5. Получается, что пять мальчиков относятся к десяти девочкам так, что на каждую девочку приходится половина мальчика. Математически это конечно верно, но с точки зрения реальности не совсем разумно, ибо мальчик это живой человек и его нельзя просто так взять и разделить, как грушу или яблоко.

Умение построить правильное отношение — важный навык при решении задач. Так в физике, отношение пройденного расстояния ко времени есть скорость движения.

Расстояние обозначается через переменную S , время — через переменную t , скорость — через переменную v . Тогда фраза «отношение пройденного пути ко времени есть скорость движения» будет описываться следующим выражением:

Предположим, что автомобиль проехал 100 километров за 2 часа. Тогда отношение пройденных ста километров к двум часам будет скоростью движения автомобиля:

Скоростью принято называть расстояние, пройденное телом за единицу времени. Под единицей времени подразумевается 1 час, 1 минута или 1 секунда. А отношение, как было сказано ранее, позволяет узнать сколько количества одной сущности приходится на единицу другой. В нашем примере отношение ста километров к двум часам показывает сколько километров приходится на один час движения. Видим, что на каждый час движения приходятся 50 километров

Поэтому скорость измеряется в км/ч, м/мин, м/с . Символ дроби (/) указывает на отношение расстояния ко времени: километров в час , метров в минуту и метров в секунду соответственно.

Пример 2 . Отношение стоимости товара к его количеству есть цена одной единицы товара

Если мы взяли в магазине 5 шоколадных батончиков и их общая стоимость составила 100 рублей, то мы можем определить цену одного батончика. Для этого нужно найти отношение ста рублей к количеству батончиков. Тогда получим, что на один батончик приходятся 20 рублей

Сравнение величин

Ранее мы узнали, что отношение между величинами разной природы образуют новую величину. Так, отношение пройденного расстояния ко времени есть скорость движения. Отношение стоимости товара к его количеству есть цена одной единицы товара.

Но отношение можно использовать и для сравнения величин. Результат выполнения такого отношения есть число, показывающее во сколько раз первая величина больше второй или какую часть первая величина составляет от второй.

Чтобы узнать во сколько раз первая величина больше второй, в числитель отношения нужно записать большую величину, а в знаменатель меньшую величину.

Чтобы узнать какую часть первая величина составляет от второй, в числитель отношения нужно записать меньшую величину, а в знаменатель большую величину.

Рассмотрим числа 20 и 2. Давайте узнаем во сколько раз число 20 больше числа 2. Для этого находим отношение числа 20 к числу 2. В числителе отношения записываем число 20, а в знаменателе — число 2

Значение данного отношения равно десяти

Отношение числа 20 к числу 2 есть число 10. Эта число показывает во сколько раз число 20 больше числа 2. Значит число 20 больше числа 2 в десять раз.

Пример 2. В классе 15 школьников. 5 из них это мальчики, 10 – девочки. Определить во сколько раз девочек больше мальчиков.

Записываем отношение девочек к мальчикам. В числителе отношения записываем количество девочек, в знаменатель отношения — количество мальчиков:

Значение данного отношения равно 2. Значит в классе из 15 человек девочек в два раза больше мальчиков.

Здесь уже не стоит вопрос о том, сколько девочек приходятся на одного мальчика. В данном случае отношение используется для сравнения количества девочек с количеством мальчиков.

Пример 3 . Какую часть число 2 составляет от числа 20.

Находим отношение числа 2 к числу 20. В числителе отношения записываем число 2, а в знаменателе — число 20

Чтобы найти значение данного отношения, нужно вспомнить,

Значение отношения числа 2 к числу 20 есть число 0,1

В данном случае десятичную дробь 0,1 можно перевести в обыкновенную. Такой ответ будет проще для восприятия:

Значит число 2 от числа 20 составляет одну десятую часть.

Можно сделать проверку. Для этого найдём от числа 20. Если мы всё сделали правильно, то должны получить число 2

20: 10 = 2

2 × 1 = 2

Получили число 2. Значит одна десятая часть от числа 20 есть число 2. Отсюда делаем вывод, что задача решена верно.

Пример 4. В классе 15 человек. 5 из них это мальчики, 10 – девочки. Определить какую часть от общего количества школьников составляют мальчики.

Записываем отношение мальчиков к общему количеству школьников. В числителе отношения записываем пять мальчиков, в знаменателе — общее количество школьников. Общее количество школьников это 5 мальчиков плюс 10 девочек, поэтому в знаменателе отношения записываем число 15

Чтобы найти значение данного отношения, нужно вспомнить, как делить меньшее число на большее. В данном случае число 5 нужно разделить на число 15

При делении 5 на 15 получается периодическая дробь. Переведём эту дробь в обыкновенную

Получили окончательный ответ . Значит мальчики составляют одну треть от всего класса

На рисунке видно, что в классе из 15 школьников треть класса составляют 5 мальчиков.

Если для проверки найти от 15 школьников, то мы получим 5 мальчиков

15: 3 = 5

5 × 1 = 5

Пример 5. Во сколько раз число 35 больше числа 5 ?

Записываем отношение числа 35 к числу 5. В числитель отношения нужно записать число 35, в знаменатель — число 5, но не наоборот

Значение данного отношения равно 7. Значит число 35 в семь раз больше числа 5.

Пример 6. В классе 15 человек. 5 из них это мальчики, 10 – девочки. Определить какую часть от общего количества составляют девочки.

Записываем отношение девочек к общему количеству школьников. В числителе отношения записываем десять девочек, в знаменателе — общее количество школьников. Общее количество школьников это 5 мальчиков плюс 10 девочек, поэтому в знаменателе отношения записываем число 15

Чтобы найти значение данного отношения, нужно вспомнить, как делить меньшее число на большее. В данном случае, число 10 нужно разделить на число 15

При делении 10 на 15 получается периодическая дробь. Переведём эту дробь в обыкновенную

Сократим полученную дробь на 3

Получили окончательный ответ . Значит девочки составляют две трети от всего класса

На рисунке видно, что в классе из 15 школьников две трети класса составляют 10 девочек.

Если для проверки найти от 15 школьников, то получим 10 девочек

15: 3 = 5

5 × 2 = 10

Пример 7. Какую часть 10 см составляют от 25 см

Записываем отношение десяти сантиметров к двадцати пяти сантиметрам. В числителе отношения записываем 10 см, в знаменателе — 25 см

Чтобы найти значение данного отношения, нужно вспомнить, как делить меньшее число на большее. В данном случае число 10 нужно разделить на число 25

Переведём полученную десятичную дробь в обыкновенную

Сократим полученную дробь на 2

Получили окончательный ответ . Значит 10 см составляют от 25 см.

Пример 8. Во сколько раз 25 см больше 10 см

Записываем отношение двадцати пяти сантиметров к десяти сантиметрам. В числителе отношения записываем 25 см, в знаменателе — 10 см

Получили ответ 2,5. Значит 25 см больше 10 см в 2,5 раза (в два с половиной раза)

Важное замечание. При нахождении отношения одноименных физических величин эти величины обязательно должны быть выражены в одной единице измерения, в противном случае ответ будет неверным.

Например, если мы имеем дело с двумя длинами и хотим узнать во сколько раз первая длина больше второй или какую часть первая длина составляет от второй, то обе длины сначала нужно выразить в одной единице измерения.

Пример 9. Во сколько раз 150 см больше 1 метра?

Сначала сделаем так, чтобы обе длины были выражены в одной единице измерения. Для этого переведем 1 метр в сантиметры. Один метр это сто сантиметров

1 м = 100 см

Теперь находим отношение ста пятидесяти сантиметров к ста сантиметрам. В числителе отношения записываем 150 сантиметров, в знаменателе — 100 сантиметров

Найдём значение данного отношения

Получили ответ 1,5. Значит 150 см больше 100 см в 1,5 раза (в полтора раза).

А если бы не стали переводить метры в сантиметры и сразу попытались найти отношение 150 см к одному метру, то у нас получилось бы следующее:

Получилось бы, что 150 см больше одного метра в сто пятьдесят раз, а это неверно. Поэтому обязательно нужно обращать внимание на единицы измерения физических величин, которые участвуют в отношении. Если эти величины выражены в разных единицах измерения, то для нахождения отношения этих величин, нужно перейти к одной единице измерения.

Пример 10. В прошлом месяце зарплата человека составляла 25000 рублей, а в текущем месяце зарплата выросла до 27000 рублей. Определить во сколько раз выросла зарплата

Записываем отношение двадцати семи тысяч к двадцати пяти тысячам. В числителе отношения записываем 27000, в знаменателе — 25000

Найдём значение данного отношения

Получили ответ 1,08. Значит зарплата выросла в 1,08 раза. В будущем, когда мы познакомимся с процентами, такие показатели, как зарплата мы будем выражать в процентах.

Пример 11 . Ширина многоквартирного дома 80 метров, а высота 16 метров. Во сколько раз ширина дома больше его высоты?

Записываем отношение ширины дома к его высоте:

Значение данного отношения равно 5. Значит ширина дома в пять раз больше его высоты.

Свойство отношения

Отношение не изменится если его члены умножить или разделить на одно и тоже число.

Это одно из важнейших свойств отношения следует из свойства частного. Мы знаем, что если делимое и делитель умножить или разделить на одно и то же число, то частное не изменится. А поскольку отношение является ничем иным как делением, то свойство частного работает и для него.

Вернемся к отношению девочек к мальчикам (10: 5) . Данное отношение показало, что на каждого мальчика приходится две девочки. Проверим, как работает свойство отношения, а именно попробуем умножить или разделить его члены на одно и то же число.

В нашем примере удобнее разделить члены отношения на их наибольший общий делитель (НОД).

НОД членов 10 и 5 это число 5. Поэтому можно разделить члены отношения на число 5

Получили новое отношение . Это есть отношение два к одному (2:1). Данное отношение, как и прошлое отношение 10:5 показывает, что на одного мальчика приходятся две девочки.

На рисунке показано отношение 2: 1 (два к одному). Как и в прошлом отношении 10: 5 на одного мальчика приходятся две девочки. Другими словами, отношение не изменилось.

Пример 2 . В одном классе 10 девочек и 5 мальчиков. В другом классе 20 девочек и 10 мальчиков. Во сколько раз в первом классе девочек больше мальчиков? Во сколько раз во втором классе девочек больше мальчиков?

В обоих классах девочек в два раза больше мальчиков, поскольку отношения и равны одному и тому же числу.

Свойство отношения позволяет строить различные модели, которые имеют схожие параметры с реальным объектом. Предположим, что многоквартирный дом имеет ширину 30 метров и высоту 10 метров.

Чтобы нарисовать на бумаге похожий дом, нужно рисовать его в таком же отношении 30: 10 .

Разделим оба члена этого отношения на число 10. Тогда получим отношение 3: 1 . Это отношение равно 3, как и предыдущее отношение равно 3

Переведем метры в сантиметры. 3 метра это 300 сантиметров, а 1 метр это 100 сантиметров

3 м = 300 см

1 м = 100 см

Имеем отношение 300 см: 100 см. Разделим члены этого отношения на 100. Получим отношение 3 см: 1 см. Теперь можно нарисовать дом с шириной 3 см и высотой 1 см

Конечно нарисованный дом намного меньше реального дома, но неизменным осталось отношение ширины и высоты. Это позволило нам нарисовать дом, максимально похожий на реальный

Отношение можно понимать и другим образом. Изначально было сказано, что у реального дома ширина составляет 30 метров, а высота 10 метров. Итого получается 30+10, то есть 40 метров.

Эти 40 метров можно понимать, как 40 частей. Отношение 30: 10 говорит о том, что 30 частей приходится на ширину, а 10 частей на высоту.

Далее члены отношения 30: 10 были разделены на 10. В результате получилось отношение 3: 1. Это отношение можно понимать, как 4 части, три из которых приходится на ширину, одна — на высоту. В этом случае обычно требуется узнать сколько конкретно метров приходится на ширину и высоту.

Другими словами, нужно узнать сколько метров приходится на 3 части и сколько метров приходится на 1 часть. Сначала надо узнать сколько метров приходится на одну часть. Для этого общие 40 метров нужно разделить на 4, поскольку в отношении 3: 1 всего четыре части

Определим сколько метров приходится на ширину:

10 м × 3 = 30 м

Определим сколько метров приходится на высоту:

10 м × 1 = 10 м

Несколько членов отношения

Если в отношении дано несколько членов, то их можно понимать как части от чего-либо.

Пример 1 . Куплено 18 яблок. Эти яблоки разделили между мамой, папой и дочкой в отношении 2: 1: 3 . Сколько яблок получил каждый?

Отношение 2: 1: 3 говорит о том, что мама получила 2 части, папа — 1 часть, дочка — 3 части. Другими словами, каждый член отношения 2: 1: 3 это определенная часть от 18 яблок:

Если сложить члены отношения 2: 1: 3 , то можно узнать сколько всего частей имеется:

2 + 1 + 3 = 6 (частей)

Узнаем сколько яблок приходится на одну часть. Для этого 18 яблок разделим на 6

18: 6 = 3 (яблока на одну часть)

Теперь определим сколько яблок получил каждый. Умножая три яблока на каждый член отношения 2: 1: 3 , можно определить сколько яблок получила мама, сколько получил папа и сколько получила дочка.

Узнаем сколько яблок получила мама:

3 × 2 = 6 (яблок)

Узнаем сколько яблок получил папа:

3 × 1 = 3 (яблока)

Узнаем сколько яблок получила дочка:

3 × 3 = 9 (яблок)

Пример 2 . Новое серебро (альпака) — это сплав никеля, цинка и меди в отношении 3: 4: 13 . Сколько килограммов каждого металла нужно взять, чтобы получить 4 кг нового серебра?

4 килограмма нового серебра будет содержать 3 части никеля, 4 части цинка и 13 частей меди. Сначала узнаем сколько всего частей будет в четырех килограммах серебра:

3 + 4 + 13 = 20 (частей)

Определим сколько килограммов будет приходиться на одну часть:

4 кг: 20 = 0,2 кг

Определим сколько килограммов никеля будет содержáться в 4 кг нового серебра. В отношении 3: 4: 13 указано, что три части сплава содержат никель. Поэтому умножаем 0,2 на 3:

0,2 кг × 3 = 0,6 кг никеля

Теперь определим сколько килограммов цинка будет содержáться в 4 кг нового серебра. В отношении 3: 4: 13 указано, что четыре части сплава содержат цинк. Поэтому умножаем 0,2 на 4:

0,2 кг × 4 = 0,8 кг цинка

Теперь определим сколько килограммов меди будет содержáться в 4 кг нового серебра. В отношении 3: 4: 13 указано, что тринадцать частей сплава содержат медь. Поэтому умножаем 0,2 на 13:

0,2 кг × 13 = 2,6 кг меди

Значит, чтобы получить 4 кг нового серебра, нужно взять 0,6 кг никеля, 0,8 кг цинка и 2,6 кг меди.

Пример 3 . Латунь — это сплав меди и цинка, массы которых относятся как 3: 2 . Для изготовления куска латуни требуется 120 г меди. Сколько требуется цинка для изготовления этого куска латуни?

Определим сколько граммов сплава приходится на одну часть. В условии сказано, что для изготовления куска латуни требуется 120 г меди. Также сказано, что три части сплава содержат медь. Если разделить 120 на 3, мы узнаем сколько граммов сплава приходится на одну часть:

120: 3 = 40 граммов на одну часть

Теперь определим сколько требуется цинка для изготовления куска латуни. Для этого 40 граммов умножим на 2, поскольку в отношении 3: 2 указано, что две части содержат цинк:

40 г × 2 = 80 граммов цинка

Пример 4 . Взяли два сплава золота и серебра. В одном количество этих металлов находится в отношении 1: 9, а в другом 2: 3. Сколько нужно взять каждого сплава, чтобы получить 15 кг нового сплава, в котором золото и серебро относилось бы как 1: 4?

Решение

15 кг нового сплава должны состоять в отношении 1: 4. Это отношение говорит о том, что на одну часть сплава будет приходиться золото, а на четыре части будет приходиться серебро. Всего же частей пять. Схематически это можно представить следующим образом

Определим массу одной части. Для этого сначала сложим все части (1 и 4), затем массу сплава разделим на количество этих частей

1 + 4 = 5
15 кг: 5 = 3 кг

Одна часть сплава будет иметь массу 3 кг. Тогда в 15 кг нового сплава будет содержáться 3 × 1 = 3 кг золота и серебра 3 × 4 = 12 кг серебра.

Поэтому для получения сплава массой 15 кг нам нужно 3 кг золота и 12 кг серебра.

Теперь ответим на вопрос задачи — «Сколько нужно взять каждого сплава? »

Первого сплава мы возьмем 10 кг, поскольку золото и серебро в нём находятся в отношении 1: 9. То есть этот первый сплав даст нам 1 кг золота и 9 кг серебра.

Второго сплава мы возьмем 5 кг, поскольку золото и серебро находятся в нём в отношении 2: 3. То есть этот второй сплав даст нам 2 кг золота и 3 кг серебра.

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

gastroguru © 2017